
Trusted and QoS-Aware Provision of Application Services IST-2001-34069

1

TAPAS

IST-2001-34069
Trusted and QoS-Aware Provision of Application Services

TAPAS

D10: QoS Monitoring of Service Level Agreements

eport Version: Deliverable D10

Report Delivery Date: March 2004 (Revised May 2004)

Classification: Public Circulation

Contract Start Date: 1 April 2002 Duration: 36m

Project Co-ordinator: Newcastle University

Partners: Adesso, Dortmund – Germany; University College London – UK; University of
Bologna – Italy; University of Cambridge – UK

Project funded by the European Community under
the “Information Society Technology” Programme
(1998-2002)

TAPAS D10

2

QoS Monitoring of Service Level
Agreements

Carlos Molina-Jimenez1, Santosh Shrivastava1, Jon Crowcroft2 and Panos
Gevros2

(1) School of Computing Science, University of Newcastle upon Tyne,
Newcastle upon Tyne, NE1 7RU, England,

(2) Computer Laboratory, University of Cambridge, Cambridge, England.

Table of Contents

QoS Monitoring of Service Level Agreements ...2

Table of Contents...2

SUMMARY...3

1. Introduction..5

2. Service Provisioning ..6

3. Approaches to Metric collection..11

4. An architecture for QoS monitoring by third parties...12

5. Related work ..17

6. Implementing QOS Monitoring in the TAPAS Multicast Service19

7. Current Status and Integration Plan ...23

References..29

 TAPAS D10

3

SUMMARY

This report, deliverable D10, describes the work done for developing QoS monitoring in
TAPAS.

The figure shows the main features of the TAPAS architecture, described in greater detail in
the supplement to deliverable D5 (An Overview of the TAPAS Architecture). If we ignore
the three shaded/patterned entities (these are TAPAS specific components), then we have a
fairly ‘standard’ application hosting environment: an application server constructed using
component middleware (e.g., J2EE application server). It is the inclusion of the
shaded/patterned entities that makes all the difference.

COMPONENT MIDDLEWARE

QoS Management, Monitoring and Adaptation

QoS Enabled
Application Server

Inter-Org.
Interaction
Regulation

QoS Monitoring and
Violation Detection

APPLICATIONS

TAPAS Architecture

We can see that QoS monitoring is occurring at two distinct levels: within an application
server for providing QoS enabled services by controlling use of application server resources
and at higher level for controlling application level QoS requirements. In TAPAS, QoS
requirements are specified using the SLAng language described in deliverable reports D2 and
D3.

Several of the rights and obligations in SLAs in a contract refer to the quality of service
(e.g., service availability, performance guarantees). We assume that interacting entities
cannot simply rely on the trust they have in one another and assume that QoS levels are
being honoured. To be of practical use, a service provider must be able to demonstrate that
the offered service meets the QoS levels promised to service users.

This report describes the fundamental issues that monitoring of contractual SLAs involves:
SLA specification, separation of the computation and communication infrastructure of the
provider, service points of presence, metric collection approaches, measurement service and
evaluation and violation detection service. We develop an architecture and give reasons why
currently it is practicable to offer guaranteed QoS only to consumers sharing Internet Service
Providers (ISPs) with the provider. To focus only on basic issues, initially we keep our
discussion abstract, general and independent of any middleware technology and
implementation details.

TAPAS D10

4

Section 6 describes how the different components of our architecture are deployed in a real
world example. The real world example we have chosen is an implementation of our QoS-
enabled Group Communication Service (GCS), described in deliverable report D8. This
example is appropriate as the GCS is capable of adapting to changes associated to the QoS
provided by the underlying network during run-time with the aim of satisfying user
requirements in the most appropriate manner. Section 7 describes how QoS monitoring will
be incorporated in other parts of the TAPAS architecture.

The Auction demonstrator application planned for September 2004 (deliverable D15) will
demonstrate how contractual SLAs for auctions (specified in SLAng) can be monitored and
any violations detected.

 TAPAS D10

5

1. Introduction

 Monitoring of contractual Service Level Agreements (SLAs) between providers of a service
(for example on-line banking, auctioning, ticket reservation, etc.) and consumers is a topic
that is gaining in importance as more and more companies switch to conducting business
over the Internet. For most services, any degradation in the level of the Quality of the Service
(QoS) perceived at the consumer’s end can have serious negative consequences. It is in the
interest of the provider to make sure that the offered service meets agreed QoS. At the same
time, consumers would also like assurances that QoS guarantees are being met. Contractual
SLAs are intended to specify the level of QoS delivered to the consumer. For example in a
stock exchange service where servers have to inform customers about market variations
promptly, the latency and reliability attributes of reporting would be stipulated as clauses in
the SLAs in the contract signed by the provider of the stock exchange service and customers.
It is worth clarifying that the providers of business services that we discuss in this paper are
known as service providers in the literature where as the providers of Internet connectivity
are known as Internet Service Provider (ISPs); to prevent confusion between these two
terms, we will call providers of business services, simply providers.

As the name suggests, monitoring of contractual SLAs is about collecting statistical metrics
about the performance of a service to evaluate whether the provider complies with the level
of QoS that the consumer expects. Such monitoring is frequently required to be carried out
with the help of third parties to ensure that the results are trusted both by the provider and
consumer. The state of art in the monitoring of SLAs by third parties is not yet well
advanced: current contracts frequently leave SLAs open to multiple interpretations because
they either contain ambiguous specifications of SLAs or no specification at all; likewise, they
often do not unambiguously specify how the QoS attributes are to be monitored and
evaluated.

It is worth mentioning that monitoring of SLAs has been studied in the past by researchers
concerned with QoS of Internet communication; though work in this direction is related to
ours, we emphasise that QoS of Internet traffic is not the main concern of this paper (see
Section[RelatedWork]). More relevant to the central concern of this work are recent
publications on monitoring of SLAs in e-commerce applications, Grid computing and Web
services. However, in these works, the discussion of monitoring is often mixed with other
details such as implementation and Web/Grid services technologies, making it difficult to
identify, isolate, and reason about basic issues of monitoring. The contribution of our work
lies actually in this direction. The aim of this paper is to bring to the system designer’s
attention the fundamental issues that monitoring of contractual SLAs involves: SLA
specification, separation of the computation and communication infrastructure of the
provider, service points of presence, metric collection approaches, measurement service and
evaluation and violation detection service. We develop an architecture and give reasons why
currently it is practicable to offer guaranteed QoS only to consumers sharing Internet Service
Providers (ISPs) with the provider. To focus only on basic issues, we keep our discussion
abstract, general and independent of any middleware technology and implementation details.

TAPAS D10

6

We begin by describing various issues concerned with the provisioning of networked
services, and follow it up with a discussion on approaches to metric collection; this will
enable us to come up with an architecture for monitoring of SLAs. We close our discussion
with a summary of related work and conclusions.

2. Service Provisioning

2.1. Computation and communication subsystems

Conceptually speaking, services provided over the Internet can be regarded as composed out
of two subsystems, namely, the computation and the communication subsystems (see Fig. 1).

Computation
subsystem

Communication
subsystem

Provider ISP1
ISP1

ISP2
ISP2

ISP4
ISP4

ISP3
ISP3

provider’s
interface ISP: Internet Service Provider

Service
consumer

Computation
subsystem

Communication
subsystem

Provider ISP1
ISP1

ISP2
ISP2

ISP4
ISP4

ISP3
ISP3

provider’s
interface ISP: Internet Service Provider

Service
consumer

Fig. 1: Components of a service provision.

 The computation subsystem consists of the infrastructure that the provider uses to produce
the service before exposing it to the external world through its interface. On the other hand,
the communication subsystem consists of the communication infrastructure used to deliver
the service from the provider’s interface to the door of the service consumer.

As suggested by the figure, in this work we abstract away the internal complexity of the
computation subsystem and represent it as a single unit; however it is worth clarifying that in
practice computation subsystems are composed out of several components such as
computers, databases, and other computation subsystems, linked by LANs and WANs; and
hidden behind an interface. Naturally, a provider can expose one or more interfaces. Our
simplification is justified by the fact that it is now common practice for providers to offer
their services through interfaces that hide the complexity of their infrastructures. For
example, the interface would hide that the computation infrastructure includes components
that belong to several autonomous and independent enterprises. As the figure suggests, with
current Internet technology, the communication subsystem that the service consumer and
provider see consists of a set of one or more autonomous and independent ISPs that work
together to route messages from source to destination. In the figure for example, we can rely
on ISP1, ISP2, and ISP3 to provide the communication subsystem, alternatively, it can be built
out of ISP1, ISP4 and ISP3. Though not shown in the figure, we can have several service
consumers interested in the service offered by the provider.

 TAPAS D10

7

The QoS received at the end of the service consumer is affected by both, the QoS of
computation subsystem and the QoS of the communication subsystem. Whereas the QoS of
the computation subsystem is mostly under the control of the provider, the QoS of the
communication subsystem depends on the QoS of each ISP used to compose the
communication path. In practice, different ISPs provide different QoS. With this assumption
in mind, it is not difficult to imagine that the QoS of the communication subsystem that relies
on a communication path composed out of ISP1, ISP2, and ISP3 is not necessarily the same as
that of a communication path out of ISP1, ISP4 and ISP3.

2.2. Service points of presence

In the discussion of Fig. 1 we mentioned that the general case is to have several service
consumers interested in using a given service. It is sensible to assume that these consumers
are connected to the Internet at different ISPs. This is illustrated in Fig. 2. It is in the interest
of the provider to deliver its service to where its potential consumers are located. We define
the points of presence of a provider as the ISPs from where the service can be accessed with
guaranteed QoS. The provider shown in Fig. 2 has three points of presence, namely, ISP1,
ISP4 and ISP7. To be able to exercise effective end-to-end QoS control, a provider needs to
take on the responsibility of guaranteeing agreed upon QoS not just at its interface, but at its
points of presence. What matters for the service consumer is the level of QoS they will
receive at a given point of presence; how this is realised should be left to the provider.

QoS guarantees are relatively easy to provide at the interface of the provider but is less likely
to be used by service consumers as it requires a direct connection, for example, by means of
leased lines, to the interface of the provider. However, it might be attractive to users of the
service with high performance requirements, such as service owners and service monitors.
Beyond the interface of the provider, the issue of guaranteed QoS is more complex because
the communication subsystem located between the provider and the service consumer is
likely to introduce delays, jitters (variation in the time between packets arriving), packet loss,
connection loss and other communication-related disturbances. Because of this, the provider
can offer its service consumers different level of QoS that will depend on the service points
of presence.

Provider

ISP4
ISP4

ISP6
ISP6

ISP8
ISP8

ISP7
ISP7

ISP: Internet Service Provider
SC: Service Consumer

ISP5
ISP5

ISP1
ISP1 ISP2

ISP2 ISP3
ISP3 SC3

SC4

SC2

SC1

Provider

ISP4
ISP4

ISP6
ISP6

ISP8
ISP8

ISP7
ISP7

ISP: Internet Service Provider
SC: Service Consumer

ISP5
ISP5

ISP1
ISP1 ISP2

ISP2 ISP3
ISP3 SC3

SC4

SC2

SC1

Fig. 2: Service points of presence with multi-homing.

TAPAS D10

8

The current business model of the dominant ISPs seems that they are more interested in
providing guaranteed communication level QoS only within their own boundaries, rather
than in collaborating with other ISPs to guarantee QoS over larger areas. Guaranteed QoS
over large areas is extremely difficult because it implies collaboration among several
autonomous organisations; each of them with their own resources, policies and business
goals [1].

Another fact that prevents ISP collaboration is the structure of the relationships between
ISPs. Currently, such structure is approximately hierarchical. Between tiers, ISPs are in a
customer-provider relationship where the higher-tier (let us say ISPA) is an ISP provider of
transport of Internet packets to lower-tier ISPs (let us say ISPb and ISPc). The higher-tier ISP
will often offer its customers SLAs that include clauses about overall packet treatment. Thus
for example, ISPA will offer ISPb guaranteed level of QoS for the aggregation of packets
coming from ISPb into ISPA and vice-verse. Unfortunately, higher-tier ISPs normally do not
offer SLAs to individual hosts connected to its lower-tier ISPs. The reason for this is that the
management overheads are unbearable and the fine grain mechanisms do not work well.
Because of this (following our previous example) it is entirely possible for a given host
connected to ISPb to perceive poor performance while ISPA is still, statistically speaking,
meetings its obligations with respect to ISPb. Another fact to take into consideration is that
between peer ISPs there are rarely SLAs. For example, it is very uncommon to see SLAs
between ISPb and ISPc in practice.

At the lowest level, ISPs like ISPb and ISPc will often offer its customers (individual end
users, now) explicit service levels, which typically refer explicitly to delay and loss
characteristics at the packet level. These may be statistical (e.g. the 95% of delay will be
100ms between customers of this ISP, or the mean packet loss probability will be no more
than 10-5), or they may be bounds (no packet delay will be more than 100ms). SLAs
guarantees at the network layer is achieved today typically by network design (provisioning)
and is based on extensive measurement and modelling work; this is made possible as
network providers now understand the typical source behaviours, and the typical traffic
patterns (the traffic matrix and its dynamics [2]).

In summary, it does seem that the most influential factor here is the current business
approach of the dominant ISPs which is based on offering QoS guaranteed within their
boundaries as a competitive differentiator [3]. Guaranteed QoS results in higher revenues for
a provider. For this reason providers will be motivated to have as many points of presence as
possible; these points of presence would be strategically located to target potential
customers, for example, a provider that offers auction services in Spanish should have one or
more points of presence in Mexico city and in other large Spanish speaking cities.

A provider can increase its number of points of presence by means of multi-homing Internet
connection. As its name suggests, multi-homing consists in having several links to the
Internet. This is shown in Fig. 2, where the provider has three Internet connection, namely, to
ISP1, ISP4, and ISP7, resulting in three points of presence.

Another approach to which a provider can resort to increase its number of points of presence
and to widen its geographical coverage is to use collocation: providers wanting to offer

 TAPAS D10

9

guaranteed level of QoS to the ISP’s subscribers can bring their servers to the ISP’s site and
connect them directly to the ISP’s network (see Fig. 3).

ISP4
ISP4

ISP6
ISP6

ISP8
ISP8

ISP7
ISP7

ISP: Internet Service Provider
SC: Service Consumer

ISP5
ISP5

ISP1
ISP1 ISP2

ISP2 ISP3
ISP3 SC3

SC4

SC2

SC1

Provider
(server2)

Provider
(server1)

Provider
(server3)

ISP4
ISP4

ISP6
ISP6

ISP8
ISP8

ISP7
ISP7

ISP: Internet Service Provider
SC: Service Consumer

ISP5
ISP5

ISP1
ISP1 ISP2

ISP2 ISP3
ISP3 SC3

SC4

SC2

SC1

Provider
(server2)
Provider
(server2)

Provider
(server1)
Provider
(server1)

Provider
(server3)

Fig. 3: Service points of presence with collocation within ISPs.

As an aside comment we can mention that these three servers might need communication
amongst themselves to maintain ‘single image’ consistency. Depending on the degree of
dependency and on the application one might need a leased line (this is not shown in the
figure) to connect the three servers together.

From the discussion presented above, we can summarise that a provider can offer guaranteed
level of QoS only to service consumers connected to the ISPs to which the service provider is
connected. Service consumers that do not share ISPs with the service provider can be offered
only best effort QoS. The service providers shown in Fig. 2 and Fig. 3 can offer guaranteed
level of QoS1 to the service consumer SC1 and other customers connected to ISP1; service
consumer SC3 and other consumers connected to ISP3 can be offered only best effort QoS.

2.3. Contractual SLAs

Earlier we pointed out that current Internet business contracts often leave computation and
communication requirements unspecified and open to interpretation. This mean that the
receiver of the service does not have a clear idea about the quality of the service (QoS) he
will receive from the provider. This undesirable situation can only be prevented with the
inclusion of a precise specification of the level of computation and communication service
expected from the trading partners. By this we mean a specification that has no room for
multiple interpretations but a precise and unique meaning that remains the same to the
contracting parties and also to third party observers that might be used to monitor the quality
of the delivered service. Specifications with this degree of precision are not trivial since they
require the use of a formal notation. This formal notation should allow to specify the level of
service that trading partner are expected to deliver or receive and also, it should allow to
perform logical and mathematical operations (such as modelling and correctness validation)
to reason about the service level at delivery time and ideally prior to developing and
deploying the service. An example of such formal notations is SLAng (Service Level
Agreement Language) which is, as it name suggests, a formal language with a well defined
syntax and semantics for describing service level specifications [4].

TAPAS D10

10

In the context of this paper we assume that the level of QoS that a service provider is
expected to provide to a given consumer is specified in the clauses of a contract signed by
the service provider and the service consumer. The SLA monitoring subsystem, whose
architecture we will present in a subsequent section, could form part of a larger electronic
contract management system. A conventional contract is a document that stipulates the rights
and obligations that two or more signatories agree to honour during their interactions. An
electronic contract management system will contain an executable contract (that is a
representation of a conventional contract) to monitor and enforce the rights and obligations
of the signatories at run-time. We identify two aspects of contract monitoring: (i) functional
aspects concerned with monitoring that business interactions follow agreed message
sequence patterns (e.g., a cancel purchase order message can only be sent if a purchase
message was sent previously); and (ii) non-functional aspects concerned with the quality of
service (the topic of this paper). Monitoring of functional aspects of contractual interactions
is not within the scope of the paper (but see the subsequent section on related work).

As shown in Fig. 4, the contract contains, among other clauses, a list of 1≥m service level
agreements (SLA1,…,SLAm). Each SLAi specifies the highest (or lowest) acceptable value

for a list of 1≥n parameters (
i

n
i PP ,...,1), when certain condition, Ci , holds. For example, the

contract can stipulate that Alice (the provider) has the obligation to provide Bob (the service
consumer) a service with a latency not greater than three seconds when Bob places less that
10 requests per second and with a latency not greater than five seconds when Bob places
more than 10 requests per second. Fig. 4 also suggests that the contract is conceptually
placed between the two interacting parties to monitor their business interactions.

Central to the issue of contractual SLA monitoring is the collection of metrics about the level
of QoS delivered by the provider. For this reason, we will discuss metric collection first and
defer the discussion of monitoring to a subsequent section.

Provider ISPi
ISPi

ISP: Internet Service Provider
SLA: Service Level Agreement; P: parameter; c: Condition

Service
consumer

interaction interaction

Contractual SLAs
11

max
11

1max
1

1
1 _;,...,: cunderPPPPSLA nn ≤≤

nn
n

n
n

nnn cunderPPPPSLA _;,...,: max1max1 ≤≤

21
2max

22
1max

2
1

2 _;,...,: cunderPPPPSLA n ≤≤
… … …

ProviderProvider ISPi
ISPi

ISP: Internet Service Provider
SLA: Service Level Agreement; P: parameter; c: Condition

Service
consumer

interaction interaction

Contractual SLAs
11

max
11

1max
1

1
1 _;,...,: cunderPPPPSLA nn ≤≤

nn
n

n
n

nnn cunderPPPPSLA _;,...,: max1max1 ≤≤

21
2max

22
1max

2
1

2 _;,...,: cunderPPPPSLA n ≤≤
… … …

Contractual SLAs
11

max
11

1max
1

1
1 _;,...,: cunderPPPPSLA nn ≤≤

nn
n

n
n

nnn cunderPPPPSLA _;,...,: max1max1 ≤≤

21
2max

22
1max

2
1

2 _;,...,: cunderPPPPSLA n ≤≤
… … …

Fig. 4: Contract between a provider and a service consumer.

 TAPAS D10

11

3. Approaches to Metric collection

Metric collection is central to contract monitoring. As its name implies, it is all about
gathering statistical information about the performance of a provider. A good discussion of
the advantages and limitations of existing techniques for metric collection is presented in [5].

Metric collection involves several issues: (i) Are we using passive (packet sniffing) or active
(packet interception, probe with synthetic operations) metric collectors? (ii) From what point
or points (provider, service consumer or network in between) are the metrics to be collected?
(iv) Who is in charge of collecting the metrics? (v) What information can be deducted from
the collected metrics? With these questions in mind and without paying attention to
implementation details, we can divide the existing techniques for metric collection into four
general categories (see Fig. 5).

The box called MeCo in the figure represents the Metric Collector and is to be understood as
the machinery used to measure and store the metrics that result from the assessment of the
level of service delivered by the provider. The MeCo component can be realised as one or
more pieces of software possibly in combination with some hardware components.

Fig. 5(a) shows what we call service consumer instrumentation. The main idea behind this
scheme is that the metrics are collected by the interested party itself (the service consumer in
our example) as the service is used. Because of this, the MeCo is installed inside the service
consumer. In this scenario, MeCo can be realised as a piece of software installed in the
service consumer’s browser.

The scheme shown in Fig. 5(b) can be described as a provider instrumentation approach. In
this scheme, the provider is in charge of collecting the metrics; consequently, the MeCo is
deployed inside the provider. Notice that with this approach the measurements about the
provider performance are taken directly from the provider’s resources.

ISP: Internet Service Provider; SC: Service Consumer
MeCo:Metric Collector

ISP2
ISP2

door

ISP1
ISP1 SC1

SC2

b)

Service
provider

MeCo
ISP2

ISP2door

ISP1
ISP1

Service
provider

SC1

MeCo

a)

SC2

MeCo

ISP2
ISP2

door

ISP1
ISP1

SC1Service
provider SC2

c)

probe1

MeCo

probe2

MeCo

Service
provider ISP2

ISP2

door
ISP1

ISP1

d)

SC1

SC2

Network
packet

collector

Request/
response

reconstruction
and analysis

MeCo

ISP: Internet Service Provider; SC: Service Consumer
MeCo:Metric Collector

ISP2
ISP2

door

ISP1
ISP1 SC1

SC2

b)

Service
provider

MeCo

ISP2
ISP2

door

ISP1
ISP1 SC1

SC2

b)

Service
provider

MeCo

Service
provider
Service
provider

MeCo
ISP2

ISP2door

ISP1
ISP1

Service
provider

SC1

MeCo

a)

SC2

MeCoISP2
ISP2door

ISP1
ISP1

Service
provider
Service
provider

SC1

MeCo

SC1

MeCo

a)

SC2

MeCo

ISP2
ISP2

door

ISP1
ISP1

SC1Service
provider SC2

c)

probe1

MeCo

probe2

MeCo

ISP2
ISP2

door

ISP1
ISP1

SC1Service
provider
Service
provider SC2

c)

probe1

MeCo

probe1

MeCo

probe2

MeCo

probe2

MeCo

Service
provider ISP2

ISP2

door
ISP1

ISP1

d)

SC1

SC2

Network
packet

collector

Request/
response

reconstruction
and analysis

MeCo

Service
provider
Service
provider ISP2

ISP2

door
ISP1

ISP1

d)

SC1

SC2

Network
packet

collector

Request/
response

reconstruction
and analysis

MeCo

Fig. 5: Approaches to metric collection.

TAPAS D10

12

The scheme shown in Fig 5(c) is what can be called periodic polling with probe clients. In
this scheme, metrics are collected neither by the provider or the service consumer but by
third parties (Probe1 and Probe2 in our figure). Precisely, Probe1 and Probe2 are two trusted
third parties trusted by the provider and the service consumer. From the point of view of their
functionality they are two synthetic clients strategically located and equipped with a MeCo.
They are there to periodically probe the provider to measure its response. The MeCo can be
realised as in the service consumer instrumentation scheme.

Finally, in Fig. 5(d) we show what can be called a network packet collection with request-
response reconstruction approach. The main idea behind this schema is to install a MeCo
somewhere in the path between the provider and the service consumers to collect all the
packets (either by interception or by sniffing) coming into and out of the provider. Next, the
packets are analysed (by looking at the TCP headers) in order to reconstruct all the relevant
request-response pairs generated by each service consumer. Since the MeCo is not installed
inside the provider or the service consumer, it can be realised by a trusted third party as in
the scheme of Fig.5(c).

4. An architecture for QoS monitoring by third parties

We assume that the interaction between the provider and the service consumer is regulated
by a signed contract. The contract stipulates, among other things, the obligations that the two
business parties are expected to honour. The goal of monitoring is to watch what a business
partner is doing, to ensure that it is honouring its obligations. We assume that monitoring is
to be carried out with the help of third parties to ensure that the results are trusted both by the
provider and consumer. Also, for the time being we will assume that the service consumer
does not want his computer to be disturbed with metric collection machinery.

4.1. Architecture

The architecture that we propose for monitoring the level of QoS delivered by a provider to a
given service consumeri at a given service point of presence ISPi, is shown in Fig. 6. Notice
that for the sake of simplicity only one point of presence and one service consumer is shown
in the figure. However, in a general scenario, the provider would have one or more points of
presence; each of them with an arbitrary number of service consumers.

To keep the figure and our discussion simple and without loosing generality we assume that
the provision of the service is unilateral, that is, only the provider provides a service.
Because of this, only the performance of the provider needs to be measured and evaluated. In
practice, it is quite possible to find applications with bilateral service provision, where the
contracting parties deliver something to each other and applications where the performance
of the consumer affects the performance of the provider. We will show the generalisation of
our architecture later. Though it is not shown in the figure, the assumption here is that the
business between the provider and each of its service consumers (service consumeri for
instance) is regulated by a signed contract. The contract clearly stipulates the SLAs at the
service point of presence. Similarly the contract stipulates metrics that are to be measured
and with which frequencies, to asses the performance of the provider. With these

 TAPAS D10

13

observations in mind, it makes sense to think that a provider will have several instances of
the scheme shown in the figure, that is, one instance for each of its service consumers.

ISPi
ISPi

ISP: Internet Service Provider; MeCo: Metric Collector
t1, t2: time intervals.
q: metric (e.g. latency) measured at t1 intervals
c: metric (e.g. No of requests) metric measured at t2 intervals

evaluation and
violation detection

service

measurement
service

probe/measure
q at t1

violation notification
subscription to SLAs

violation events

Service
consumeriProvider

MeCo

transfer measures
c at t2

retrieve c and q

MeCo

ISPi
ISPi

ISP: Internet Service Provider; MeCo: Metric Collector
t1, t2: time intervals.
q: metric (e.g. latency) measured at t1 intervals
c: metric (e.g. No of requests) metric measured at t2 intervals

evaluation and
violation detection

service

measurement
service

probe/measure
q at t1

violation notification
subscription to SLAs

violation events

Service
consumeriProvider

MeCo

ProviderProvider

MeCo

transfer measures
c at t2

retrieve c and q

MeCo

Fig. 6: Architecture for unilateral monitoring of QoS.

Two third party services are required:

• Measurement service: an enterprise trusted by the provider and the service
consumer and with expertise in measuring a given list of metrics at specifies intervals
and storing the collected results in its databases.

• Evaluation and detection violation service: an enterprise trusted by the provider
and the service consumer. It is there to retrieve metrics from the databases of the
measurement service, perform computation on them, compare the results of the
computation against high or low watermarks and send notifications of violations to
the service consumer when violations of SLAs are detected.

Notice that, for the sake of simplicity, in the figure we show single enterprises performing
the functions of the measurement, and the evaluation and detection violation services. In
practice, the measurement service can be performed by several enterprises that compensate
their functionality with each other or replicate them to provide more reliability. Naturally, the
evaluation and detection violation service can be realised in a similar way.

Notifications of violations are represented as events. We envisage an event notification
system offering the service consumer the possibility to subscribe to events in which it is
interested. It is not difficult to imagine that the service consumer can dynamically subscribe
and unsubscribe to different events, perhaps in accordance with the momentary needs of the
applications that it is running. To simplify the figure, notifications of violations are sent only
to the service consumer; however, these notifications can be sent to other parties (for

TAPAS D10

14

example, the provider) who express interest by means of subscriptions. The issue about
where and how notifications of SLA violations are processed by the service consumer falls
out of the interest of this work. However, we can briefly mention that such notifications can
be caught by the contract management system (as implied by Fig. 4), that will, after
interpreting them, take the necessary actions, such as sending a complaint note or a penalty
bill to the provider.

4.2. Metric collection to build the measurement service

The contract would stipulate the level of QoS that the provider is obliged to deliver to the
service consumer at the service point of presence ISPi when certain conditions (for example,
no more that 10 requests per second) in the usage of the service hold. This implies that
although the service consumeri of Fig. 6 is not delivering any service to the provider, it still
has obligations to honour; consequently it has to be monitored as well. It can be said that in
general, monitoring is a symmetric activity. This is why measurement services rely on two
kind of MeCo.

• Provider’s performance MeCo: a MeCo for collecting metrics about the level of QoS
delivered by the provider at the service point of presence.

• Consumer’s behaviour MeCo: a MeCo for collecting metrics about the behaviour of
the service consumer.

The critical issue here is to find a suitable approach for deploying the two MeCo (see Section
3). The architecture shown in Fig. 6 illustrates the situation where the service consumer does
no wish to be disturbed unduly with metric collection responsibilities. This requirement
prevented us from using schema of Fig. 5(a) for implementing the provider’s performance
MeCo. A more suitable candidate to implement this MeCo is scheme Fig. 5(c). The basic
idea is to think of the measurement service as a trusted third party equipped with a MeCo
that is hired by the contracting parties to work as the probes. Because the contract dictates
that the SLAs are to be guaranteed in all connection points within the ISPi, the provider’s
performance MeCo is free to probe the provider from anywhere as long as it does not leave
ISPi. The dotted arrowed line that goes from this MeCo to the provider and back to the
MeCo, is there to show that to probe the service, this provider’s performance MeCo issues a
synthetic operation (at agreed upon intervals) and waits for a response.

A limitation of this approach is that because the MeCo is connected to ISPi at a different
point as service consumeri, its perception of the provider’s performance might be different
from that seen by service consumeri. Ideally and to enhance the accuracy on the
measurements the MeCo should be placed as close as possible to service consumeri. Thus if
service consumeri is prepared to be disturbed with measurement responsibilities, we can
place the MeCo inside service consumeri, this would give us the highest accuracy.

 The metrics collected by the MeCo inside the measurement service can provide a great deal
of information about level of QoS at the service points of presence; unfortunately, it can say
little or nothing about the origin of potential problems; it does not have enough information
to say whether a degradation of the service is caused by an underperformance of the provider
or by an overload condition generated by the service consumer. For example it has not

 TAPAS D10

15

enough information to say whether an unsatisfactory latency is caused by a provider’s
malfunctioning database or by an unexpectedly high number of queries generated by the
service consumer. In other words, it can not say whether the service consumer is honouring
its obligations.

The most suitable approach for implementing the consumer’s behaviour MeCo is the one
shown in Fig. 5(b). This MeCo is in the right location to collect metrics at the level of detail
needed to asses the behaviour of the service consumer. For instance, this MeCo can collect
information about the number of requests issued by the service consumer and, if needed,
about the resources (number of CPUs, database servers, disk memory, cryptographic keys
and TCP ports) demanded by each request. Likewise, it can tell whether the service
consumer is maliciously or accidentally placing illegal operations on the provider. The dotted
arrowed line pointing from this MeCo to the measurement service is meant to show that the
metrics collected by this MeCo are transferred at some point and over the Internet to the
measurement service who stores them.

Another alternative for implementing the provider’s performance MeCo is scheme of Fig
5(d). With this approach the MeCo does not probe and collect metrics from the service points
of presence; instead it is connected somewhere to the communication line between the
provider and ISPi, to collect packets as explained earlier. Naturally, it is possible to
implement this MeCo as a trusted third party. Unfortunately, this scheme cannot be used to
measure consumer’s resource usage; further, the work of packet collection and request-
response reconstruction and analysis is not a trivial task; it requires the deployment of
specialised hardware and software somewhere in the communication link between the
provider and the service consumer; and a great deal of packet analysis, whereas the approach
based on Fig. 5(c) seems to be more straightforward and natural.

The specific nature of the metrics to be collected depends on the application. On the
application and on the SLAs depends also the interval at which the metrics are to be
collected. This information is extracted from the contract and provided to the measurement
service. For example, the measurement service might be requested to collect metric about the
latency (to perform a given operation) of the service every five minutes or to collect metrics
about the availability of the service every three minutes.

In the figure, we can imagine that the evaluation and detection violation service is retrieving
the latest n value of the metric c, and the latest k values of the metric q. We can imagine that
q is a metric that defines the latency of an operation and c is the metric that defines the
number of employees from the service consumer’s logged into the provider at a given
moment of time, that is, the working conditions of the provider. If this is true then the
evaluation and detection violation service can compute the latest average latency under the
latest average number of users, with an accuracy that depends on the interval (t1 and t2
respectively) with which q and c are measured by the measurement service.

4.3. Mutual monitoring

In practice, there are applications where the business partners provide a service to each other,
that is, where distinction between the provider and the service consumer is blurred. In these

TAPAS D10

16

applications the interacting parties need monitor each other’s QoS. This is in fact a more
general scenario than the one shown in Fig. 6. The generalisation of our proposed
architecture for monitoring contractual SLAs is shown in Fig.7.

ISPi
ISPi

ISP: Internet Service Provider; MeCo: Metric Collector.
q,r: metrics (e.g. latency) measured at intervals t1and t3, respectively.
c,d: metrics (e.g. No of requests) metric measured at intervals t2 and t4, respectively.

evaluation and
violation detection

service

measurement
service

probe/measure
q at t1

ProviderA

MeCo

transfer measures
of c at t2

retrieve c and q

MeCoA

ProviderB

MeCo

MeCoB

violation notification

subscription to SLAs
violation events

retrieve d and r

probe/measure
r at t3

transfer measures
of d at t2

violation notification

subscription to SLAs
violation events

ISPi
ISPi

ISP: Internet Service Provider; MeCo: Metric Collector.
q,r: metrics (e.g. latency) measured at intervals t1and t3, respectively.
c,d: metrics (e.g. No of requests) metric measured at intervals t2 and t4, respectively.

evaluation and
violation detection

service

measurement
service

probe/measure
q at t1

ProviderA

MeCo

transfer measures
of c at t2

retrieve c and q

MeCoA

ProviderB

MeCo

MeCoB

violation notification

subscription to SLAs
violation events

retrieve d and r

probe/measure
r at t3

transfer measures
of d at t2

violation notification

subscription to SLAs
violation events

Fig. 7: Architecture for bilateral monitoring of QoS.

4.4. Recursivity

An aspect of monitoring that we have not discussed yet is the customer-provider relationship
between the provider and ISPi. Notice that from the point of view of Internet connection, the
provider is a consumer of ISPi. This suggests that their interaction needs monitoring as well.
Incidentally, our proposal of Fig. 6 can be used to perform this task. We believe that our
architecture is general enough and recursive in that it can be placed between any pair of
interacting business partners to monitor their interaction. Naturally, it can be placed between
ISPi and the service consumeri to monitor their interaction.

4.5. Monitoring within a provider

 A provider should take steps to ensure that the incidents of violation detection are
minimised; for this it will have to take a proactive monitoring resource usage inside its
enterprise. The central idea here is that rather than reacting to contractual violations notified
by the notification and violation detection service, the provider should prevent them from
reaching its service points of presence. For this to be possible, the provider has to deploy its
own monitoring mechanisms to monitor its own resources and take corrective measures so
that they deliver the expected level of QoS. Proactive monitoring and managing is a local and

 TAPAS D10

17

private activity; it is performed independently of the monitoring discussed here; though this
independency does not necessarily mean that the two monitoring mechanisms cannot benefit
from each other; however since proactive monitoring and managing is private, it is up to the
provider to decide what, how and when to monitor, perhaps after analysing the SLAs it has
signed with each of its service consumers.

5. Related work

 The importance of monitoring the level of QoS delivered by providers has gained the
attention of several researchers; in particular, monitoring of contractual SLA’s has been
identified as an important issue in several research projects. Its relevance was first identified
by researchers concerned with the performance of Internet network protocols and more
recently by researchers in the field of e-commerce, Grid applications and Web services.

An example of a system designed to perform network protocols monitoring is Nprobe[6].
Nprobe is a system for passively and simultaneously monitoring different levels of the
protocol stack. Nprobe is built on top of the operating system and requires modification of
the kernel and of the firmware of the network interface card. To work as a monitor, a
computer is first deployed with the Nprobe system and then placed somewhere in the
network to capture packets, process them (for example time stamp them, discard meaningless
information, etc.) and store them on disk for off-line reconstruction to analyse loss, round-
trip, time, etc. Another system that performs passive monitoring of multiple network
protocols is Windmill[7]. Windmill was designed to measure the performance of application
level protocols such as BGP, DNS and HTTP. As Nprobe, Windmill is built on top of kernel
of the operating system. Once a computer is deployed with Windmill, it can be placed in
strategic points in the network to passively eavesdrop on target protocols. Packets collected
by Windmill are used for reconstructing the request-response interactions of the high level
protocol of interest. This high level protocol reconstruction can recursively call and
reconstruct the lower layers of the protocol stack to observe error conditions and other
protocol events. Another system that also performs traffic monitoring is the EdgeMeter
architecture[8]. EdgeMeter is a distributed meter system designed to monitor QoS of traffic
of IP networks. EdgeMeter’s architecture is distributed in the sense that it can be deployed to
collect metric in the provider’s enterprise and in the service consumer’s. Metrics collected by
EdgeMeter can readily be used for billing; likewise, they can be useful for network planning
and QoS monitoring of applications. EdgeMeter relies on some principles of active networks:
mobile code is transferred over the network to the party (provider, service consumer or both)
interested in collecting metrics, where it is deployed and executed. Because of this,
EdgeMeter cannot be used where this kind of disturbances are unacceptable.

It can be argued that the information collected by network protocol monitors such as Nprobe,
Windmill and EdgeMeter can be used to monitor end-to-end QoS (the focus of interest of our
work). In our view, this might be possible but impractical because of the substantial amount
on work on request-response reconstruction; we believe that a monitoring system like our
proposal of Fig. 6 and Fig. 7 that focuses on measuring the performance of representative
high level operations (for example, place a bid, send a purchase order, etc.) as seen from the
service consumer’s perspective is more realistic. Not surprisingly several researchers are

TAPAS D10

18

working in this direction. We will discuss next the results that are the most relevant to our
work.

A system designed to monitor end-to-end performance is ETE (End-to-End) [9]. It measures
performance of transactions which are considered to be formed of sequences of events (for
example, request sent, socket opened, response received, etc.). For example, it can measure
the time elapsed between the placement of a request to fetch a Web page and the arrival of
the last bit of the requested page. Sensors to detect the occurrence of events of interest are
deployed in the application, middleware and operating system layers of the provider’s, the
service consumer’s or both, platforms. Events are received by a transaction generator who
reconstructs the transactions for further response time analysis. The strong side of ETE is
that it does not need to sniff or catch all incoming or outgoing network packets to reconstruct
a transaction; likewise, it allows a provider to customised its measurement to the usage
pattern of a given service consumer by means of an event subscription mechanisms. ETE is
relevant to our work because it illustrates how a MeCo placed inside the providers of Fig. 6
and Fig. 7 can be built. Similar ideas could be used for building a MeCo inside service
consumeri.

The work that has greatly influenced our research is that conducted by the team at IBM
working on Web Service Level Agreement Framework (referred to here as WSLA-F). As
reported in several publications (see for example [10,11,12]), the project addresses issues
related to service management in Web service environments; among these issues are the
definition of a language for SLAs specification, creation and the implementation of a SLA
compliant monitor. The SLA compliant monitor implementation includes a measurement
service, a condition evaluation service and a deployment service. It is worth noting that this
measurement service collects metrics from two points. First it collects metrics from inside
the provider, that is, directly from the managed resources. Secondly, it collects metrics from
outside the provider by issuing probing requests or intercepting client invocations [10].
Although the WSLA-F papers contain illuminating discussions about metric collection,
metric evaluation, implementation and deployment of the SLA compliant monitor, it is
driven by implementation interests; consequently, it overlooks some fundamental questions.
For example, they do not discuss the effects of the communication path between the provider
and the service consumer and the path between the provider and the measurement service. In
particular, they do not explain to what points in the Internet the service is delivered.

Another work of relevance to ours is the one presented by Kakadia [1]. In this paper,
Kakadia addresses the issue of delivering end-to-end QoS over a communication path
composed out of several autonomous enterprises. The paper contains a very informative
discussion about the technical problems (limited bandwidth, delays, packet looses, jitters,
etc.) that a packet faces as it traverses, hop-by-hop, from the provider end to the service
consumer’s. The author reports that one of the main difficulties in providing QoS to
consumers by this approach is that the packets must traverse several private networks with
proprietary resources, QoS implementation, policies and business objectives. This
heterogeneity makes it extremely difficult to implement packet classification, resource
reservation and prioritisation mechanisms that cooperate to keep delays, packet losses and
other communication problems under control.

 TAPAS D10

19

The difficulties in offering guaranteed level of QoS over communication paths composed out
of several vendors is pointed out in [13] as well; although it does not propose a solution for
providing service with guaranteed level of quality it presents a good introduction to the topic
and clear definitions of related concepts such as availability, throughput, packet loss, latency
and jitter.

 The issue of defining service level agreements is discussed in [4]. In this work, an XML
based language called SLAng is suggested as a language for precisely defining service level
agreements in contracts between providers and service consumers. SLAng elements in
contracts impose behavioural constraints on providers and service consumers involved.
SLAng semantics ensure absence of inconsistencies and ambiguities in the definition of the
SLAs. Likewise, it provides a formal basis for comparisons between levels of service offered
by different providers.

 Work conducted on resource accountability by Chun et. al. [14] bears some similarity to our
work. In this work, resource usage in a federated system is monitored with the purpose of
ensuring that users do not accidentally or maliciously misuse the resources. The monitoring
mechanism works as follows: a metric collector is associated with each active user to collect
traces about what resources (CPU, memory, disk, TCP and UDP port, etc.) the user is
accessing. The metric collectors report the metrics that they collect to a central module that
evaluates the users’ behaviour and signal anomalies. Our work is similar to this in that we are
interested in collecting metrics about the provider’s work load generated by the service
consumer; in this situation, work load is actually the same as resource consumption. On the
other hand, our work is different in that, we are interested in assessing the performance of the
system as seen by the users (service consumers) form the points to where the service is
delivered.

As well as experimental implementations of QoS monitoring systems, there are also
commercial ones; Keynote, for example, is a company that upon request will connect a
probing computer at a specified point in the Internet to periodically probe a provider; in
addition, Keynote can deploy its machinery within the provider’s enterprise to collect
performance metrics directly from the provider’s resources [15]. Keynote is a good example
of the trusted third party that could play the role of the measurement services of Fig. 6 and
Fig. 7.

As stated earlier, the discussion of monitoring and enforcement of business operation clauses
falls outside the interest of this paper; very briefly we can mention that a possible approach
to monitor and enforce business operation clauses is to use finite state machines [16]; the
paper also contains a discussion on other approaches.

6. Implementing QOS Monitoring in the TAPAS Multicast Service

6.1. Architecture for Mutual Monitoring

In figure 8 we describe how the different components of our measurement service are
deployed in a real world example. The real world example we have chosen is an
implementation of our QoS-enabled Group Communication Service (GCS), described in

TAPAS D10

20

deliverable report D8. This example is appropriate as the GCS is capable of adapting to
changes associated to the QoS provided by the underlying network during run-time with the
aim of satisfying user requirements in the most appropriate manner (e.g., minimising
message forwarding). Furthermore, users may dictate the QoS guarantees the GCS may
provide in terms of probabilistic metrics (e.g., the percentage of reliable message delivery
acceptable).

Core Protocol
Sub-Service

Network
Services

Accessing
Services

MeCoCPS
AS

MeCoCPS
NS

MeCoNS
CPS

MeCoAS
CPS

Measurement
Service

Evaluation and
Violation

Detection Service

Monitored Data
Violation Notification
Application message flow

Fig. 8: Deployment of Mutual Monitoring of QoS for Reliable Multicast.

The Core Protocol Sub-Service (CPS) is responsible for implementing the logic of the GCS
and providing user access to reliable multicast. We have described the user in our example as
accessing services (AS). Such services may be considered the application or protocols
responsible for higher level message guarantees (e.g., message ordering). The CPS requires
access to underlying network services to enable message dissemination across computer
networks. We describe such services as network services (NS). An NS may provide QoS
guarantees to the CPS (e.g., mean message delivery latency) and so may directly influence
the way the CPS functions.

The monitoring requirement is satisfied by Metric Collectors (MeCo). A MeCo is co-located
with a protocol layer (identified by subscript) and is responsible for monitoring the QoS of a
protocol layer (identified by superscript). A MeCo collects QoS metrics and passes them to
the Measurement Service. The measurement service then correlates information gained by
one or more MeCos and provides a suitably formatted message for consumption by the
evaluation and violation detection service. The evaluation and violation detection service is
responsible for informing protocol layers of SLA violations.

In our implementation each protocol layer exhibits interfaces via CORBA RPC. Via such
interfaces, a protocol layer may access message dissemination services of the protocol layer
directly beneath them in the protocol stack. A CORBA call back mechanism is used by a
protocol layer to deliver messages to protocol layers immediately above them in the protocol
stack. Data relating to the metrics of QoS is passed to the measurement service via the Java
Messaging Service (JMS) by MeCos and then by the measurement service to the evaluation
and violation detection service via JMS. The evaluation and violation detection service
passes notification of violations of an SLA to interested parties (protocol layers) via JMS.

 TAPAS D10

21

Figure 9 shows the CORBA IDL for the core protocol service. Two interfaces are provided
that provide access to group lifecycle and message handling services for clients. The CPS
interface provides two methods:

• RMCast – Allows clients to issue multicast messages to a particular group (used by
AS).

• RMDeliver – Allows delivery of messages to CPS (used by NS).

module CoreProtocolService {

 struct groupMember {
 string memberID;
 string IPAddress;
 short portNumber;
 };

 struct groupProperties {
 string groupID;
 sequence<groupMember> memberList;
 };

 interface GroupManager {

 boolean createGroup(in groupProperties prop);
 boolean deleteGroup(in string groupID);
 boolean addMember(in groupMember);
 boolean deleteMember(in groupMember);
 groupProperties retrieveProperties(in string groupID);

 };

 interface CPS {

 void RMCast(in string groupID, in string msg);
 void RMDeliver(in string groupID, in string msg);

 };
};

Fig. 9: CORBA IDL from CPS.

We chose CORBA RPC for inter-protocol layer communication to enhance the
interoperability of our system and to enable a MeCo to be integrated into our service in a
non-intrusive manner via CORBA interceptors. Interceptors enable the interception of
messages (down calls and up calls) without any change to application logic. Via the use of
interceptors a MeCo may obtain metric measurements related to QoS of a protocol layer. For
example, MeCocps

NS allows the gathering of metric data relating to the performance exhibited
by the NS layer as viewed by the CPS.

We chose JMS for passing messages between the measurement/evaluation services and the
protocol layers as such communications are message oriented and may be consumed as and
when appropriate with minimal impact on performance and so promote a scalable solution.
For example, there may be many instantiations of different protocol layers requiring similar
message type communications with the measurement service. Rather than require
synchronous RPC on a per-protocol layer basis (a non-scalable solution) a more appropriate
approach would be to enable messages to be passed to the measurement service via event
channels (provided by JMS) that are associated to particular message types (we assume
different instances of protocol layers would use the same event channels). Figure 10 provides
a sample message that would be passed via JMS relating to the performance metrics. This

TAPAS D10

22

message would be exhibited by the CPS and relates to the settings that govern the behaviour
of the RMCast protocol.

<?xml version = "1.0"
encoding = "UTF-8"?>
<ExchangeDoc>
 <pars>
 <eta val="4.60"/>
 <rho val="2"/>
 <omega val="0"/>
 </pars>
 </ExchangeDoc>
</xsd:schema>

Fig. 10: Example of performance metrics described in XML.

We now provide a detailed description of the different monitoring and evaluation present in
the system. As our primary concern is the CPS, we concern ourselves with monitoring that
may directly influence evaluations and violations that may impact the function of the CPS.

6.2. Monitoring & Evaluation

The overall performance of the CPS is influenced by the QoS provided by the NS and the
usage made of the CPS by the AS. Therefore, the following MeCo are required for
determining SLA violations in the system:

• MeCoAS
CPS – Co-located with AS and responsible for monitoring the QoS provided

to the AS by the CPS. These metrics are based on the interception of messages
between the AS and the CPS using CORBA interceptors.

• MeCoCPS
AS – Co-located with CPS and responsible for monitoring the usage the AS

makes of the CPS. These metrics are based on information supplied directly from the
CPS.

• MeCoCPS
NS – Co-located with CPS and responsible for monitoring the QoS provided

to the CPS by the NS. These metrics are based on the interception of messages
between the CPS and the NS using CORBA interceptors.

• MeCoNS
CPS – Co-located with NS and responsible for monitoring the usage the CPS

makes of the NS. These metrics are based on information supplied directly from the
NS.

From our descriptions we may determine two basic types of MeCo a protocol layer may
require: (i) aid in determining if a protocol layer is used inappropriately, (ii) aid in
determining the QoS provided to a protocol layer by a lower protocol layer. As described
above, type (ii) uses CORBA interceptors to gain the relevant metric data. Type (i) requires a
protocol layer to exhibit an interface that allows a MeCo to gather information as and when
required. Such an interface is based on XML message exchange. We use SOAP based
messages to transfer this information from a protocol layer to an associated MeCo of type (i).

 TAPAS D10

23

Periodically a MeCo constructs appropriate summary information based on the metric data
gathered and prepares a message in the form of XML for passing, via JMS, to the
measurement service. We use XML as the evaluation and violation service uses XML based
language constructs for determining if SLAs have been violated. The measurement service
assumes responsibility for correlating the QoS data received from a number of MeCo
instances into a form appropriate for acceptance by the evaluation and violation detection
service. This is required as the tailoring of such information is dependent on the instances of
SLAs that govern QoS between multiple instances of clients and servers (protocol layers).
For example, different instantiations of a protocol layer may exist on a per client application
basis, each with their own SLA. Placing the tailoring of QoS information at the MeCo level
would require an instantiation of a MeCo on a per-client basis. However, by having a per-
protocol layer type MeCo gathering QoS information we can construct the appropriate
information in the measurement service. This allows a protocol layer to only require a single
MeCo, irrelevant of the number of clients (higher protocol layers) associated to it. This is a
more scalable solution as the MeCo appears light-weight in the fact that the unnecessary
processing burden related to the many different SLAs a protocol layer may be participating
in is confined to the measurement service.

Protocol layers register their interest to event channels (provided by JMS) on a per-SLA
basis. Violation of an SLA results in the evaluation and violation detection service issuing an
XML message detailing the type of violation that has occurred on the appropriate SLA event
channel. The responsibility of consuming such messages is left to the individual protocol
layers. This decoupled communication is ideal in that the evaluation and violation service
does not have to contact directly each protocol layer that is associated to an SLA. Once
protocol layers have consumed messages indicating SLA violation the negotiation process
between protocol layers may be enacted. Such negotiation is protocol layer dependent and is
detailed in previous literature related to CPS, AS and NS.

7. Current Status and Integration Plan

7.1. Current status

As discussed at the beginning of this report, QoS monitoring of SLAs is occurring at two
distinct levels: within an application server for providing QoS enabled services by
controlling use of application server resources and at higher level for controlling application
level QoS requirements. This two level monitoring view generalises to multiple (greater than
two) level view, because an application server itself makes use of various services which
could be QoS enabled and each such service will need QoS monitoring. Given this
observation, we have developed basic concepts of monitoring of contractual SLAs of
services and presented the monitoring architecture (figs. 6 and 7). We have performed an
implementation of this architecture as required within the QoS enabled multicast service (see
section 6, and deliverable report D8). Next we discuss plans for implementing monitoring in
other parts of TAPAS.

TAPAS D10

24

7.2. Integration Plan

The work performed by us so far forms the basis of the integration effort to be completed by
September 2004 as a part of TAPAS platform demonstration, auction application hosting
(deliverable D15). The work being extended in three directions:

(i) Integration with SLAng: Implementing automatic extraction of measurement, monitoring
and violation detection information from SLAng SLA specification.

(ii) Integration with QoS enabled application server: Implementing QoS monitoring of
resource usage within the TAPAS application server.

(iii) Application level monitoring: Implementing QoS monitoring and SLA violation
detection of auction hosting application.

7.2.1. Integration with SLAng

In TAPAS, QoS requirements are specified using the SLAng language described in
deliverable reports D2 and D3. Figure 11 provides a diagram that describes the general
principles of our approach to SLAng and monitoring integration. Using the diagram we now
present an overview of the major parts of our service followed by a more detailed description
of how implementation of our system is achieved.

A monitoring and measurement service is installed on a per-node basis within the JBOSS
cluster configuration. Such a service is responsible for gathering metric data from a cluster
and propagating this data to the SLAng engine. The SLAng engine implements the logic that
may determine if violation of SLA has or has not occurred. An appropriate deployment
scenario would be a SLAng engine located on a distinct node in the system (hosted by a third
party). The monitoring part of the service is responsible for gathering metric data from a
number of metric collectors (MeCos) that are distributed throughout a node. MeCos intercept
client requests and associated replies and construct messages that include client request
related metric data and sends these messages to the monitoring part of the service. As the
system is a wholly Java solution, the sending of messages from MeCo to monitoring may be
achieved via Java Remote Method Invocation (RMI). The measurement part of the service is
responsible for correlating all the metric data into a form acceptable by the SLAng engine
and sending such information to the SLAng engine. The sending of metric data is achieved
via message oriented middleware (MOM). As we are predominantly concerned with a Java
solution we use JMS as our MOM. Once the SLAng engine has consumed metric data from
the JMS violation of SLA identification may be carried out. If such a violation has occurred a
message is constructed by the SLAng engine that informs the participants in an SLA that the
SLA has been violated. This message is distributed to the appropriate SLA participants via
JMS.

MeCos may be placed within a container that is responsible for managing bean execution
(application logic tier) or in axis that is responsible for managing client requests (web service
tier). In the container scenario interceptors are placed in the JBOSS interceptor stack and
capture data related to bean invocation via RMI. In the axis scenario interceptors represent
axis handlers and are used to capture data related to SOAP invocations. MeCos capture three

 TAPAS D10

25

pieces of data relating to client invocations: (i) sender ID, (ii) type of invocation (determined
by method name), (iii) and the time taken to satisfy client request. A possible deployment
scenario for MeCos is described in figure 11. We see that Organization X is accessing a
service provided by organization Y. Organization X has a MeCo located in its web tier that
records how long requests take to succeed and propagates such information to its own
monitoring and management service that in turn supplies appropriate information to the
SLAng engine via JMS. In organization Y a MeCo in the web tier captures information
relating to the usage of services belonging to organization Y. A further MeCo is installed in a
node associated to the JBOSS cluster belonging to organization Y that captures information
relating to the usage of specific EJBs hosted by organization Y. The MeCos in organization
Y propagate their information to organization Y’s monitoring and measurement service. This
information is then suitably formatted by the monitoring and measurement service and
passed to the SLAng engine via JMS.

Monitoring and
Measurement Service

Application Logic MeCo

Client
Reply

SLAng
Engine

JMS

Metric Data
Topics

SLA Violation
Notification

Topics

Client
Request

MeCo MeCo Application Logic

Monitoring and
Measurement Service

Container

Organisation X Organisation Y

Web
Tier

Web
Tier

Figure 11: Monitoring Integration with SLAng

We assume a number of invocation types may be common across multiple organizations and
SLAs. A topic is created in JMS that is associated with a type of invocation, allowing any
organization that accesses/provides such an invocation to issues their metric data to a well
defined topic (a topic represents a medium for communicating related messages between
senders and receivers). In addition to the three parameter types associated to metric
information identified by a MeCo, the identifier of the service provider must be added to a
piece of metric information before placing such information as a message on the appropriate
topic. This allows the SLAng engine to determine the parties involved in a
consumer/provider relation and apply the appropriate SLA in determining the validity of
such a relation. JMS is used to propagate SLA violations back to organizations. Each SLA
has a unique identifier. It is this identifier that is used to create a topic from which all
interested parties (involved in an SLA) may subscribe and consume all notifications of SLA
violations.

We use JMS as the basis for message exchange between the SLAng engine and organizations
as the addition of new organizations and SLAs to our model would only require the creation
of the appropriate topics and subscriptions. There is no need to tightly couple

TAPAS D10

26

communications (e.g., RPC) between organizations and the SLAng engine, making the
MOM approach significantly more scalable and flexible.

7.2.2. Integration with QoS enabled application server

QoS control in application server is being implemented, as discussed in D7, by two principal
middleware services, named Configuration Service (CS) and Controller Service (CTRL). The
former service is responsible for discovering, negotiating, and reserving the resources
necessary to meet the QoS requirements of a particular application component, hosted by that
application server; the latter service is responsible for monitoring the reserved resources, and
possibly adapting the component execution in case the QoS delivered by these resources
deviates from that required by the component itself. Work is under way (led by Bologna) on
the development of CS and CTRL services within the JBOSS application server. Figure 12
shows how these two services are intended to fit in with the other JBOSS services.

JBoss consists of a collection of middleware services whose implementation is based on a
microkernel termed Java Management eXtension (JMX); these services can interoperate via
the JMX microkernel. Specifically, JMX provides the Java developers with a common
software bus that allows them to integrate components, such as modules, containers, and
plug-ins. These components are declared as MBean services that can be loaded into JBoss,
and can be administered using JMX.

JJMMXX IImmpplleemmeennttaattiioonn

JTS/JT
A

Security

EJB Container Databases Java Server Pages JMS

Remote
Management

Data Sources CTRL

CS

Fig. 12: The JBoss JMX Microkernel

Both the CS and CTRL services work at two level: at the level of individual nodes
(computers) of a cluster (micro level); and at the level of a cluster (macro level). We describe
here the macro level functionality of the CTRL service, implemented by the
MacroResourceManager MBean.

The macro resource middleware tier of the TAPAS QoS-enabled application server is
currently implemented by the MacroResourceManager MBean, and integrated into the JBoss
server by means of the JMX software bus.

 TAPAS D10

27

Figure 12 depicts the UML diagram of the principal MBeans we have implemented in order
to extend the JBoss application server, version 3.2.3; each MBean in Fig. 13 exposes an
interface consisting of methods to be used for invoking it.

The MacroResourceManager MBean uses the following auxiliary JMX services, in order to
implement the cluster configuration, reconfiguration, and monitoring functionalities.
Specifically, the it uses a MeasurementService, in order to save periodically the cluster state,
and the InterpreterService in order to transform the initial SLA, specified in a xml form, into
a Java object.

Both the MeasurementService and the InterpreterService are currently implemented as
MBeans.

Figure 13: MBean Classes and Interfaces

As mentioned above, the macro resource tier performs two principal activities; namely, the
configuration/reconfiguration of the cluster, and the cluster monitoring. Figure 14 below
summarizes the implemented Java classes that form the currently available Macro Resource
Middleware Tier prototype.

The architecture of the cluster monitoring is based on the high-level QoS Monitoring
architecture described in section 4. Specifically, the MacroResourceManager MBean
implements the cluster monitoring using both the MeasurementService MBean, and the
Evaluation and Violation Detection Service (implemented as a class, as illustrated in Fig. 14,
below).

This latter Service is responsible for monitoring, at run-time, the adherence of the run-time
execution environment to the SLA; i.e., it detects whether the run-time environment
conditions (obtained from the MeasurementService) are close to violating the SLA, and
decides the cluster reconfiguration strategy to be performed, if necessary.

TAPAS D10

28

The cluster monitoring is generally used for checking the status of the hosted application
home cluster. This can be done by interrogating a specific cluster membership Metric
Collector (MeCo) that detects (i) the current view of the cluster membership, (ii) new
members that join the cluster, (iii) dead members that leave the cluster, and (iv) the
performance status of the cluster, in terms of the throughput, response time, and probability
of rejection architectural parameters (note that these three parameters allow one to detect
whether or not the nodes of the cluster are overloaded).

The monitoring activity is currently implemented by the MacroResourceMonitoringImpl
Java class (Figure 14), and enabled by the MacroResourceManager MBean, which starts the
monitoring thread. This thread is currently able to check the (i) overall cluster membership
(through the getMembership() method in Figure 14) (ii) the new members that join the home
cluster (through the getNewMembers() method in Figure 14) and (iii) the dead members that
leave the home cluster (through getDeadMembers() method in Figure 14).

The cluster membership MeCo, which provides one with the above mentioned information
about the clustered node membership, is implemented by using the JGroup communication
interface available in JBoss, and uses the HAPartition service of the JBoss clustering
framework.

Finally, the current implementation of the MacroResourceMonitoring sends periodically the
data obtained from the MeCo service, about the cluster membership, to the Measurement
Service, whose task is to maintain them in stable storage (e.g., for logging purposes).

Figure 14: TAPAS Macro Resource Middleware Tier

 TAPAS D10

29

7.2.3. Application level monitoring

It is necessary to ensure that a hosted application actually meets the QoS requirements, so we
need to measure various application level QoS parameters, calculate QoS levels and report
any violations. The specification of the auction application that will form the part of
September 2004 demonstration (deliverable D15) is given in deliverable D13. The QoS
monitoring will be implemented as a third party service, using JMS messaging middleware,
in line with the scheme presented in fig. 11. Fig. 14 depicts the overall architecture of the
auction application. The various parameters of metric collectors (MeCO), measurement and
evaluation and violation detection services will be derived from the SLAng specifications.

Auction application
owner

User
(Supplier)

Auctioneer
(Manufacturer)

Business
Service

ASP

ISP SSP OrganizationKeys:

ElectronicService SLA

Hosting SLA

Communication SLA

Service
Provider

Hosting SLA

Persistence SLA

Terms & Conditions

ElectronicService SLA

User
(Supplier)

SLA

Trusted Third
Party

Monitoring

Fig. 15: Auction application

References

[1] Deepak Kakadia, “Tech Concepts: Enterprise QoS Policy Based Systems & Network
 Management”, Sun Microsystems,
 available at: http://wwws.sun.com/software/bandwidth/wp-policy/

[2] K. Papagiannaki, N. Taft, Z. Zhang, C. Diot, “Long-Term Forecasting of Internet
Backbone Traffic: Observations and Initial Models”, IEEE Infocom, San Francisco,
Apr. 2003.

[3] Marjory S. Blumenthal and David D. Clark, “Rethinking the Design of the Internet:
 The End-to-End Arguments vs. the Brave new World”, ACM Transactions on
Internet Technology, Vol. 1, No. 1, Aug. 2001.

[4] J. Skene, D. Lamanna and W. Emmerich, “Precise Service Level Agreements”,
 proceedings of the 26th International Conference on Software Engineering (ICSE'04),
 May 2004, Edinburgh, Scotland.

TAPAS D10

30

[5] Ludmila Cherkasova Yun Fu, Wenting Tang and Amin Vahdat, “Measuring and
 Characterizing End-to-End Internet Service Performance”, ACM Transactions on
 Internet Technology, Vol. 3, No. 4, Nov. 2003.

[6] Andrew Moore, James Hall, Christian Kreibich, Euan Harris and Ian Pratt,
 “Architecture of a Network Monitor”, in Proceedings of the Passive and Active
 Measurement Workshop, La Jolla California, Apr. 6-8, 2003.

 [7] David Watson, G. Rober Malan and Farnam Jahanian, “An extensible probe
 architecture for network protocol performance measurement”, Software Practice and
 Experience, Vol. 34, 2004.

[8] Marcelo Pias and Steve Wilbur, “EdgeMeter: Distributed Network metering”, In
 Proceedings of the IEEE Openarch 2001 conference, short paper session, Anchorage,
 Alaska, Apr. 2001.

[9] Joseph L. Hellerstein, Mark M. Maccabee, W. Nathaniel Mills III and John J. Turek,
 “ETE: A Customizable Approach to Measuring End-to-End Response Times and
 their Components in Distributed Systems”, In proceedings of the 19th International
 Conference on Distributed Computing Systems, Austin, TX, 31 May - 4 Jun 1999.

[10] Keller, A., Ludwig, H., “The WSLA Framework: Specifying and Monitoring
 Service Level Agreements for Web Services”, Journal of Network and Systems
 Management, Special Issue on E-Business Management, Vol. 11, No. 1, Plenum
 Publishing Corporation, Mar. 2003, (also, IBM Research Report RC22456)

[11] Debusmann, M., Keller, A., “SLA-driven Management of Distributed Systems using
 the Common Information Model”, In proceedings of the 8th International IFIP/IEEE
 Symposium on Integrated Management (IM 2003), Colorado Springs, CO, Mar.
2003.

[12] Keller, A., Ludwig, H., “Defining and Monitoring Service Level Agreements for
 dynamic e-Business”, In Proceedings of the 16th USENIX System Administration
 Conference (LISA'02), Philadelphia, PA, Nov. 2002.

[13] Amitava Dutta-Roy, “The cost of quality in Internet-style networks”, IEEE Spectrum,
 Vol. 37, Issue 9, Sep. 2000.

[14] Brent N. Chun, Andy Bavier, “Decentralized Trust Management and Accountability
in Federated Systems”, In Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS'04), Jan. 05-08, 2004, Big Island,
Hawaii.

[15] Keynote Systems, Inc. http://www.keynote.com.

[16] Carlos Molina-Jimenez, Santosh Shrivastava, Ellis Solaiman, and John Warne, “Run-
time Monitoring and Enforcement of Electronic Contracts”, Electronic Commerce
Research and Applications Vol.3, No.2, 2004.

