
1

TAPAS

IST-2001-34069

Trusted and QoS-Aware Provision of Application Services

TAPAS Final Report

Report Version: Deliverable D20

Report Delivery Date: 31 March 2005

Classification: Public Circulation

Contract Start Date: 1 April 2002 Duration: 36m

Project Co-ordinator: Newcastle University

Partners: Adesso, Dortmund – Germany; University College London – UK; University of
Bologna – Italy; University of Cambridge – UK

Project funded by the European Community under
the “Information Society Technology” Programme
(1998-2002)

TAPAS D20

2

TAPAS Final Report
Santosh Shrivastava

School of Computing Science, University of Newcastle upon Tyne,
Newcastle upon Tyne, NE1 7RU, England

Table of Contents

TAPAS Final Report..2

Table of Contents...2

Summary ..3

1. Introduction..5

2. Motivating Example...5

3. Description of consortium and roles of research teams ...8

4. Project Results ...10
4.1. Objectives ...10
4.1. TAPAS Architecture...10
4.2. SLA Specification and analysis ..12
4.3. Terms and conditions contract specification, monitoring and enforcement16
4.4. QoS monitoring and violation detection ...22
4.5. QoS aware middleware ...24
4.6. Integration and Evaluation ...29

5. Deliverables ...33
5.1. Deliverable Reports ..33
5.2. Software ..34

6. Dissemination and Exploitation...35
6.1. TAPAS Industrial Advisory Board ...35
6.2. Workshops and Conferences...35
6.3. Research papers and articles ...36
6.4. Exploitation...43

9. Conclusions...44

References..47

Appendix..48

TAPAS Industrial Advisory Board ..48

 TAPAS D20

3

Summary

The main objective of the TAPAS project was to develop novel methods, tools, algorithms
and protocols that support the construction and provisioning of Internet application services.
The project planned to achieve this objective by developing QoS enabled middleware
services capable of meeting Service Level Agreements (SLAs) between application services.

The project identified the following three key requirements for application service
provisioning.

1. Enhancing the application hosting middleware platform to be QoS aware. This way,
hosting platform will be better equipped to meet the requirements of the hosting applications.
In the absence of such a feature, the only alternative available to an ASP is over provisioning,
which is not particularly desirable.

2. Ability to ensure that all inter-organisation interactions are strictly according to the terms
and conditions contracts in force. In the worst case, violations of agreed interactions are
detected and notified to all interested parties; for this, an audit trail of all interactions will
need to be maintained.

3. Ability to demonstrate that hosted applications are meeting the various QoS requirements
of SLAs.

These three requirements underpin the design of the TAPAS architecture that contains three
new systems (layers).

The QoS management, monitoring and adaptation layer is intended to make the underlying
application server QoS enabled (requirement 1). It is responsible for reserving the underlying
resources necessary to meet the QoS requirements of applications hosted by that application
server, and monitoring the reserved resources, and possibly adapting resource usage (e.g.,
reserving some more) in case the QoS delivered by these resources deviates from that
required by the applications.

All cross-organisational interactions performed by applications are policed by the Inter-
Organisation Interaction regulation subsystem (requirement 2). Techniques were developed
enable relevant aspects of terms and condition contracts can be converted into electronic
contracts (x-contracts) and represented using state machines and role based access control
(RBAC) mechanisms for run time monitoring and policing. Techniques were developed to
enhanced middleware to incorporate non-repudiable service interactions providing audit trails
of service interactions.

It is necessary to be able to demonstrate that a hosted application actually meets the QoS
requirements (e.g., availability, performance) stated in the hosting contract SLAs
(requirement 3). For this reason, we developed an application level QoS monitoring service,
which must also measure various application level QoS parameters, calculate QoS levels and
report any violations. In TAPAS, QoS requirements in SLAs are specified using the SLAng
language.

TAPAS D20

4

An important feature of TAPAS architecture is that the three subsystems can be deployed
independent of each other. For example, an ASP might decide to use a ‘standard’ application
server, without the need for QoS management features, because in a given scenario, over
provisioning might be acceptable. The ASP still might need one or both of inter-organisation
interaction regulation and QoS monitoring and violation detection subsystems. Another
important feature of the TAPAS architecture is that the inter-organisation interaction
regulation subsystem, as well as the QoS monitoring and violation detection subsystem
could be provided by the ASP or one or more trusted third parties, thereby providing extreme
flexibility in deployment.

 TAPAS D20

5

1. Introduction

It is well known that organisations are increasingly focusing on their core businesses and
streamlining their operations by ‘outsourcing’ non-core businesses to external organisations.
In particular, many organisations find it cost effective to outsource their IT applications to
Application Service Providers (ASPs). An ASP typically uses middleware and component
technologies for deploying, hosting and managing applications of an organization from a
centrally managed facility. However, as organisations become global and distributed, such
centrally managed hosting solutions will need to be replaced by multi-site, distributed hosting
solutions.

The TAPAS project was interested in developing solutions to the problem faced by
Application Service Providers (ASPs) when called upon to host distributed applications that
make use of a wide variety of Internet services provided by different organisations. This
naturally leads to the ASP acting as an intermediary for interactions for information sharing
that cross organisational boundaries. As explained in the first year deliverable report D5 [1],
essentially this means that an ASP should be capable of hosting Virtual Organisations (VOs),
meaning, it should be capable of providing facilities for forming and managing VOs. We
define a Virtual Organisation (VO) as a strategic alliance among a group of cooperating
organisations that share services electronically – say using Web/Internet technology – for the
accomplishment of a set of mutually beneficial business goals; these arrangements being
made such that each organisation continues to maintain its own autonomy, except for the
mutually agreed undertakings of the alliance.

A central requirement of VO operational management is to enable organisations to regulate
access to their service resources in a manner, which honours their individual resource sharing
policies both securely and with integrity. Regulating such access is made difficult since each
potentially accessible organisation might not unguardedly trust the others. Accordingly, all
organisations within a VO will require their interactions to be strictly controlled and policed.
There will therefore be a need for all business process relationships to be underpinned by
guarded trust management procedures.

In the TAPAS project, we have taken the view that to form and automatically manage
partnerships within a VO underpinned by guarded trust management procedures, it will be
necessary to have electronic representations of contracts that can be used to mediate the rights
and obligations that each interacting entity promises to honour. In the worst case, violations
of agreed interactions are detected and notified to all interested parties.

With the above observations in mind, the overall objective of the TAPAS project was to
develop novel methods, tools, algorithms and protocols that support the construction and
provisioning of Internet application services.

2. Motivating Example

The auction demonstrator application developed within the project [2] is a good example,
illustrating various contracts involved. The application is a sealed reverse auction that is

TAPAS D20

6

used by a car manufacturer (Toyota, Ford, etc.) for buying car parts (e.g. tyres, radiators,
mirrors, etc.) from car part suppliers. Figure 1 shows the parties that participate in our
demonstration scenario. We will discuss the roles played by each party first and latter on we
will discuss their contractual business relationships, which are represented by double-headed
arrows in the figure.

• The auctioneer is the representative of a car manufacturing company that at a given
time runs one or several instances of the auction with the purpose of buying car parts
from car part suppliers; for example, he might run an instance of the auction for
buying seats and another one for buying batteries. We assume that he does not want to
be disturbed with computer-related issues, thus, he relies on somebody else to provide
the infrastructure to run the auction; the business related activities which the
auctioneer performs include selecting and sending invitations to potential bidders,
opening and closing of bid rounds, declaring winners and so on.

auction application owner

ASP

ISP SSP

auctioneer
(manufacturer)

credit-rating
service

bidder1
(supplier)

TTP

bidderm
(supplier)

monitoring

Terms and conditions

contract

Terms and conditions
contract

persistence SLAs
contract

communication SLAs
contract

hosting SLAs
contract

electronic
service SLAs

contract

electronic
service SLAs

contract
monitoring

leyend:
-- organisation
-- contractual

interaction

auction application owner

ASP

ISP SSP

auctioneer
(manufacturer)

credit-rating
service

bidder1
(supplier)

TTP

bidderm
(supplier)

monitoring

Terms and conditions

contract

Terms and conditions
contract

persistence SLAs
contract

communication SLAs
contract

hosting SLAs
contract

electronic
service SLAs

contract

electronic
service SLAs

contract
monitoring

leyend:
-- organisation
-- contractual

interaction

leyend:
-- organisation
-- contractual

interaction

Fig 1. Auction scenario with its participants and their contractual relationships.

• The bidders are car part suppliers interested in selling their products to the
auctioneer. In our scenario we consider that the number of bidders can be in the order
of several hundreds.

• The auction application owner is the enterprise that offers the auctioneer the auction
application ready to use; we can conceive it as an enterprise that owns a source code
of the auction software and builds on-demand customized and ready to use copies of
it to different auctioneers. The auction application owner is not involved in business
related activities but in technical ones only; its responsibilities include running and
tuning the auction software. We assume that the auction application owner does not
have the ancillary resources to run his auction software, thus he relies on somebody
else to host it.

 TAPAS D20

7

• The Application Service Provider (ASP) is an enterprise that offers hosting services
to the auction application owner. It provides all the necessary ancillary resources
(CPU, databases, ISP, human, etc.) to host the auction software. The assumption is
that at a given time the ASP might be hosting several instances of the reverse sealed
auction that belong to the one or several auctioneers as well as other applications of
arbitrary nature.

• The Internet Service Provider (ISP) is an enterprise that offers Internet connectivity
to the APS so that the auction can be reached by other interested parties of the auction
scenario.

• The Storage Service Provider (SSP) is an enterprise that offers disk space to the
ASP.

• The business service is an enterprise that offers credit-rating services, or any other
ancillary service, such as billing, to the auction application owner.

• The Trusted Third Party (TTP) is an enterprise with enough credentials to act as a
trusted third party. It measures the performance of a party, assesses it and determines
whether the party is honouring its contractual obligations with respect to another
party. For the sake of simplicity, Fig. 1 shows the TTP monitoring the contractual
obligation only between the auctioneer and the auction application owner; however, a
TTP can and should be deployed between any pair of business partners such as the
auctioneer and bidder1, and the auction application owner and the ASP.

It is time now to discuss the meaning of the double-headed arrows that join the participants of
our demonstration scenario shown in Fig. 1. A crucial assumption in our scenario is that the
participants are autonomous and independent organizations that besides being mutually
suspicious still want to conduct business together; because of the existence of this degree of
mutual mistrust each pair of business partners needs to rely, as in conventional business, on
legal business contracts to regulate their business interactions.

If in conventional business there are contracts for different commercial agreements (contracts
for the rent of a house, contracts for loan of machinery, etc.) in our demonstration scenario,
we identify five different types of contracts, namely, terms and conditions contracts,
electronic service level agreement (SLA) contracts, hosting SLA contracts, communication
SLA contracts and persistence SLA contracts. From a structural view, the five contract types
are rather similar: all of them contain a header (signatories’ names, addresses, signatures,
start and end date, etc.) and clauses that stipulate the rights and obligations of each signatory
party, however, from the point of view of the content of their clauses they are different:

• Terms and conditions contracts describe the relationship between the application
owner and the bidders, i.e. the suppliers, specifying business action interactions.
They specify ‘business conversations’ constrained by permissions, obligations,
prohibitions, actors (agents), time constraints, and message type checking. We define
a conversation as a small business activity executed between two or more business
partners to perform a well defined task, such as submit a bid, issue a purchase order,
process payment, refund money, cancel purchase order, etc.

TAPAS D20

8

• Electronic service SLAs contracts stipulate the QoS expected from the interaction
between the auctioneer/auction application owner pair and the auction application
owner/credit rating service pair. For the first pair, the electronic service SLA will
contain clauses such as “the auction application owner shall guarantee that even
during peak periods the invocation of the place_bid operation is successfully
completed within two seconds when there are less than 100 users logged in”; for the
second pair the electronic service SLA will contain clauses such as “the auction
application owner shall never place more that 50 request per second”.

• Hosting SLAs contracts are used to specify the QoS between the ASP and the
application owner. They contain the objectives of the electronic service SLA because
the application owner will be eager to delegate the objectives to other providers. Due
to the more technically oriented relationship between application owner and ASP, the
hosting SLA contains as well technical objectives such as memory space and
utilisation regulations for technical services such as user management, maintenance
windows etc.

• Communication SLAs contracts specify QoS objectives for the relationship between
ASP and ISP.

• Persistence SLAs contracts are used to specify QoS objectives for data storage
service offered by an SSP.

 The distinction of different types of contracts is relevant because we have learnt that the
concepts and technology needed to represent, monitor and enforce a contract varies
depending of the contract type.

3. Description of consortium and roles of research teams

Work within the project was structured into four technical workpackages (WPs).

• WP1: Application Service Requirements and Specification.

• WP2: Design of QoS-aware Infrastructure for Application Hosting

• WP3: Implementation of QoS-aware Core Services.

• WP4: Case Studies and Evaluation.

Basically, within WP1 we worked towards acquiring an understanding of the requirements
and then developed SLA specification and its QoS analysis tools and techniques; WP2 was
devoted to the development of trusted and QoS-aware middleware architecture based on the
requirements generated from WP1. WP3 was about implementation of the architecture
developed in WP2, and within WP4 we performed assessment of the architecture and its
implementation through demonstrator application building exercises.

The TAPAS consortium brought together significant expertise from the application hosting,
distributed computing and middleware, fault tolerance, software engineering, computer

 TAPAS D20

9

security and computer networking communities. Below we describe their principal
responsibilities.

The School of Computing Science at the University of Newcastle: The coordinating
contractor for TAPAS, the Distributed Systems group conducts research on concepts, tools
and techniques for constructing distributed fault-tolerant systems that make use of standard,
commodity hardware and software components. Current work is focused on dependable
workflow management for cross-organisation workflows, information sharing in virtual
enterprise and wide area group communication systems. The group has built a number of
major distributed software systems as CORBA middleware services. Newcastle led WP2 and
played active role in the development of the TAPAS architecture, tasks on QoS enabled
group communication, trust management, trusted coordination and auction application
development.

Adesso: Adesso AG is a German mid-range company offering IT consulting, software
development and application hosting. Main clients are insurance companies and banks, for
which the company analyses, designs and implements enterprise relevant applications based
on component technologies such as Enterprise JavaBeans. The variety of hosted applications
include applications in fields of telecommunication (B2B) and Internet portals for online
communities and banks. Hosting of applications in areas of insurance companies and banks
in mainly performed by the clients themselves, though the requirements and concepts are
defined by the consultants and developers of Adesso AG. Adesso led WP 4 and provided
case studies, hosting facilities and undertook auction application development and evaluation
work. Adesso also played an active role in WP1 by providing requirements of application
hosting.

The Dept. of Computer Science, University of Bologna: The research group is currently
investigating a number research issues in the design of QoS-preserving, distributed
middleware platforms. Specifically, these issues include: i) strategies for providing World
Wide Web service users with adequate QoS. This activity involves investigating the design of
middleware services that can meet effectively application-level (i.e., end-to-end) QoS
requirements of Internet-based, latency-sensitive multimedia applications; and investigation
on the use of group communication mechanisms to support replication in database systems.
Bologna led WP3 and contributed to all the activities concerned with QoS, in particular, load
balancing and QoS aware application server.

The Dept. of Computer Science, University College London (UCL): The Software
Systems Engineering Group is concerned with the development of large and complex
software intensive systems. It focuses on: the real-world goals for, services provided by, and
constraints on such systems; the precise specification of system structure and behaviour, and
the implementation of these specifications. The three key technologies where the group
contributes to the state-of-the-art are: databases, distributed objects (particularly middleware
and mobile agent technologies), web infrastructure (particularly XML and related
technologies). UCL led WP1 and contributed to the development of SLA specification and
analysis tool, architecture development.

Computer Laboratory, University of Cambridge: The Systems Research Group at the
Computer Laboratory, University of Cambridge, has been one of the premier research forces

TAPAS D20

10

in communications, distributed systems and operating systems since the founding of the lab,
the oldest computer science teaching department in the world. Past projects include Universe
(which delivered one of the earliest high speed distributed systems), nemesis, a novel
operating system with excellent multimedia scheduling properties, as well as Home Area
Networks, Xenos (an accountable peer-to-peer distributed architecture). Networks and
Operating Systems related work is focusing on Disk QoS Enforcing Quality of Service in
Storage Systems , Efficient Network Routeing, Next Generation Inter-AS Routeing.
Cambridge worked on QoS networking requirements (WP1), Network Control Architectures
(WP2) and QoS enabled group communication (WP3).

4. Project Results

4.1. Objectives

According to the description of work, “the overall objective of the TAPAS project is to
develop novel methods, tools, algorithms and protocols that support the construction and
provisioning of Internet application services. The project will achieve the overall objective by
developing QoS enabled middleware services capable of meeting Service Level Agreements
(SLAs) between application services and will enhance component based middleware
technologies such that components can be deployed and interact across organisational
boundaries. The project will develop notations for expressing SLAs to enable specification of
QoS, such as the availability as well as trust relationships. SLA trust specifications will be
used for deriving service invocation primitives enriched with authentication, non-repudiation
mechanisms, with or without the involvement of trusted third parties.”

The key scientific results and achievements of the projects have been classified as follows:

• TAPAS Architecture

• SLA Specification and analysis

• Terms and conditions contract specification, monitoring and enforcement

• QoS monitoring and violation detection

• QoS aware middleware

• Integration and evaluation

4.1. TAPAS Architecture

We identified the following three key requirements for application service provisioning.

1. Enhancing the application hosting middleware platform to be QoS aware. This way,
hosting platform will be better equipped to meet the requirements of the hosting applications.
In the absence of such a feature, the only alternative available to an ASP is over provisioning,
which is not particularly desirable.

 TAPAS D20

11

2. Ability to ensure that all inter-organisation interactions are strictly according to the terms
and conditions contracts in force. In the worst case, violations of agreed interactions are
detected and notified to all interested parties; for this, an audit trail of all interactions will
need to be maintained.

3. Ability to demonstrate that hosted applications are meeting the various QoS requirements
of SLAs.

These three requirements underpin the design of the TAPAS architecture. Figure 2 shows its
main features. If we ignore the three shaded/patterned entities (these are TAPAS specific
components), then we have a fairly ‘standard’ application hosting environment: an
application server constructed using component middleware (e.g., CORBA, J2EE). It is the
inclusion of the shaded/patterned entities that makes all the difference.

COMPONENT MIDDLEWARE

QoS Management, Monitoring and Adaptation

QoS Aware
Application Server

Inter-Org.
Interaction
Regulation

QoS Monitoring and
Violation Detection

APPLICATIONS

Fig. 2. TAPAS Architecture

The QoS management, monitoring and adaptation layer is intended to make the underlying
application server QoS enabled (requirement 1). It is responsible for reserving the underlying
resources necessary to meet the QoS requirements of applications hosted by that application
server, and monitoring the reserved resources, and possibly adapting resource usage (e.g.,
reserving some more) in case the QoS delivered by these resources deviates from that
required by the applications. Final year deliverable report D11 [3] describes in detail the
design and implementation of QoS aware application server.

All cross-organisational interactions performed by applications are policed by the Inter-
Organisation Interaction regulation subsystem (requirement 2). First year deliverable D5 [1]
described how relevant aspects of terms and condition contracts can be converted into
electronic contracts (x-contracts) and represented using state machines and role based access
control (RBAC) mechanisms for run time monitoring and policing. Second year deliverable
report D9 [4] described how component middleware can be enhanced to incorporate non-
repudiable service interactions providing audit trails of service interactions. This subsystem
could be provided by the ASP or one or more trusted third parties.

It is necessary to be able to demonstrate that a hosted application actually meets the QoS
requirements (e.g., availability, performance) stated in the hosting contract SLAs
(requirement 3). For this reason, we need an application level QoS monitoring service, which

TAPAS D20

12

must also measure various application level QoS parameters, calculate QoS levels and report
any violations. That is the function of the third subsystem shown in the figure. This
subsystem could be provided by the ASP or one or more trusted third parties. Second year
deliverable report, D10 [5] described the design and implementation this subsystem. In
TAPAS, QoS requirements in SLAs are specified using the SLAng language described in
deliverable report D2 [6].

The overall features of the TAPAS architecture summarised above are described in detail in
the deliverable report D6 [7].

An important feature of TAPAS architecture is that the three subsystems can be deployed
independent of each other. For example, an ASP might decide to use a ‘standard’ application
server, without the need for QoS management features, because in a given scenario, over
provisioning might be acceptable. The ASP still might need one or both of inter-organisation
interaction regulation and QoS monitoring and violation detection subsystems. Another
important feature of the TAPAS architecture is that the inter-organisation interaction
regulation subsystem, as well as the QoS monitoring and violation detection subsystem
could be provided by the ASP or one or more trusted third parties, thereby providing extreme
flexibility in deployment.

4.2. SLA Specification and analysis

4.2.1. Stakeholders

In order to understand Service Level Agreements between the participants in an ASP scenario
we focused on the parties involved in ASP and the relationships between them. The ASP
model described below (described in detail in deliverable D1 [8]) is an abstraction of typical
industrial ASP situations. Figure below shows the stakeholders and their SLA-based
relationships in an abstract ASP model.

 TAPAS D20

13

Application
Provider

Application
Owner

User

Infrastructure
Provider

Service
Provider

Service
Owner *

*

has SLA with

*

*

*
Organization

Legend:

*

Container
Provider

SSP ISP

Fig. 3. Stakeholders

4.2.2. SLAng Specification language and analysis

SLAng is an XML language for defining service level agreements, the part of a contract
between the client and provider of an Internet service that describes the quality attributes that
the service is required to possess [6]. We define the semantics of SLAng precisely by
modelling the syntax of the language in UML, then embedding the language model in an
environmental model that describes the structure and behaviour of services. Fig. 4.
illustrates the notations used in SLAng.

TAPAS D20

14

Fig. 4. SLAng language

Work on the SLAng Service-Level Agreement (SLA) language as part of the TAPAS project
has led both to a better understanding of the requirements for SLA languages and novel
solutions to those requirements.

Our initial requirements analysis focussed on the problem of providing end-to-end Quality of
Service (QoS) in federated distributed systems. We found that previous SLA languages had
tended to target horizontal relationships between services; that is: relationships between
services of a similar type, or at a uniform level of abstraction. We argued that because QoS
factors such as performance and reliability were intrinsically dependent not only on the
coordination of services but upon the infrastructure upon which they were deployed, that a
more architectural approach was required. Accordingly we based the early design of SLAng
on a classical layered model of application service provision. SLAng was able to represent
agreements relating not only to electronic services, but also to component hosting,
component replication, storage service provision and internet service provision, allowing
service providers to use SLAng to make all of the agreements required to guarantee end-to-
end QoS.

In the early design of SLAng we identified the need to protect the service provider from the
actions of the service consumer. Because many QoS properties vary according to the load on
a service, it is essential that the obligations on the client be described if the service provider is
to be capable of fulfilling their own obligations.

We next considered the architecture of the language itself. SLAs are associated with
financial obligations on the part of the signatories, and their main purpose is to mitigate the
financial risk to each party of the other failing to fulfil their obligations. We therefore
considered precision of expression to be a primary requirement for this language. Previous
SLA languages provided either informal definitions of their terms, or made use of ontologies
written in natural language to describe their semantics. We wished to develop a more

 TAPAS D20

15

rigorous semantic definition for the language. However, the relatively high level of
abstraction at which the language must be described, and the dependence on the real-world
details of services of particular types, did not lend itself naturally to a purely mathematical
semantic description. We overcame this issue by adopting the model-denotational style of
semantic definition employed by several specifications in the Model Driven Architecture
technology space.

The principle underlying the model-denotation style of semantic definitions is that object-
oriented models of the syntax of a language can be associated with an object-oriented model
of the semantic domain of the language. The use of object-oriented models, whose semantics
is partly defined by the interpretation of names in the models, allows fine control over the
level of abstraction of the models, leading to very unambiguous descriptions of language
semantics despite the use of real-world terms. We achieved a highly unambiguous
description of the SLAng language semantics for electronic services by this means. The
syntactic model of that part of SLAng is associated with a model of electronic services,
including a model of events pertinent to the QoS of such services. Logical constraints within
the model ensure that SLAs are only associated with services whose performance is
consistent with the quantities specified in the SLA. The semantic model provides an explicit
reference to the domain of application of the SLA, and the logical constraints provide an
unambiguous description of the conditions implied by the SLA, leading to a high level of
precision overall.

We considered the benefits that our semantic description might confer to a software
engineering process. We looked at two scenarios of service composition: in the first, a client
has a need for a service and a particular set of service requirements. They must choose a
suitable service from a range of options, each offering non-negotiable ‘commodity’ SLAs. If
the client expresses their requirements in SLA terms, then the SLAng semantics provide a
strong standard of comparison between the requirements and the offered SLAs, which we call
‘compatibility’. An SLA A is compatible with another SLA B if the range of behaviours
acceptable to A is always acceptable to B. Assessing compatibility is an open problem as in
general the set of behaviours acceptable to an SLA may be infinite. However, the concept of
compatibility is superior to previous standards of comparison proposed for SLAs, which rely
on ordered metric spaces and may lead to unsafe choices of SLA.

The second scenario of service composition is to predict the QoS behaviour of a service
based on the qualities offered by any services that it composes and its expected load. Since
the emergent QoS is also dependent on the implementation of the service, this amounts to
performing a traditional performance analysis, which is a broad area of ongoing research.
We contributed to the large body of work on deriving performance models from UML
designs by demonstrating that logical constraints could be used as contracts for such
derivations. We also showed how SLA information could be incorporated into models by
defining a profile for SLAng electronic service SLAs.

Finally we considered the implementation of monitoring solutions based on the SLAng
language. The SLAng semantics unambiguously define the conditions that SLAng SLAs
impose, but in practice these conditions will be monitored electronically to detect violations.
Such a monitoring solution must respect the semantics of the language, and so neither ignore

TAPAS D20

16

violations implied by the terms of the agreement, nor report incorrect violations. We
observed that the highly formal and machine-readable nature of the models specifying the
language rendered them appropriate input to MDA code generation tools. We therefore
implemented a contract checker by employing a code generator to produce a data repository
from the specification of the language. This repository can contain SLAs, and also data
related to the execution of services, conforming to the types described in the semantic part of
the language specification. The monitor is completed by a constraint evaluator that assesses
whether the data in the repository is free from constraint violations. Since we employed
constraints to describe the conditions required for a service to be performing adequately in
terms of a related SLA, this process amounts to detecting SLA violations.

Automatically generating the SLA checker provides benefits in terms of both correctness and
ease of implementation. Because the generation process and constraint violation checking
processes are defined independent of the application domain (checking SLAs), we do not
expect the generation process to introduce the same kind of errors of interpretation that might
arise were a contract checker implemented by hand. Moreover, as the language definition
changes, we can regenerate the checker at no additional cost. We have recently generalised
our description of the approach to describe how it can be used to implement run-time
requirements monitors for software systems, in which some of the requirements are specified
at run-time.

We evaluated our contract checker implementation by integrating it into an industry standard
application server and employing it to monitor the operation of the TAPAS auction-house
example application. We discovered scalability issues in the implementation of the logical
constraint checker, which we were able to report as research results. However, the
experience validated the feasibility of our approach.

4.3. Terms and conditions contract specification, monitoring and
enforcement

All cross-organisational interactions performed by applications are policed by the Inter-
Organisation Interaction regulation subsystem. This subsystem could be provided by the ASP
or one or more trusted third parties. Each enterprise expects access to other’s services. An
operation on a service is allowed only if it is permitted by the rules of the contract and then
only if it is invoked by a legitimate role player of a participating enterprise. Thus, a contract
is a mechanism that is conceptually located in the middle of the interacting enterprises to
intercept all the contractual operations that the parties try to perform. Intercepted operations
are accepted or rejected in accordance with the contract clauses and role players’
authentication. Our approach is to represent service interactions as finite state machines and
make use of role based access control mechanisms for authenticated access. In the deliverable
report D5, we described how contract clauses can be converted into finite state machines
(FSMs).

Inter-Organisation Interaction regulation subsystem has two main layers (see figure 5). The
contract monitoring and enforcement layer makes use of the services of the underlying layer
that provides trusted coordination.

 TAPAS D20

17

 FSM based Contract
Monitoring and enforcement

Component Middleware for
Trusted Coordination

Inter-Organisation
Interaction regulation

Fig.5. Inter-Organisation Interaction regulation

To regulate the interactions involved, a given action must be attributable to the party who
performed the action and commitments made must be attributable to the committing party.
For example, it should not be possible for a client to subsequently disavow the request and/or
consumption of a service. Similarly, it should not be possible for the service provider to
subsequently deny having delivered the service. If information is shared then the parties
sharing the information should be able to validate a proposed update, the update should be
attributable to its proposer and the validation decisions with respect to the update attributable
to the other parties. That is, to regulate an interaction we require attribution, validation and
audit of the actions of the parties involved. Non-repudiable attribution binds an action to the
party performing the action. Validation determines the legality of an action with respect to
interaction agreements. Audit ensures that evidence is available in case of dispute and to
inform subsequent interactions.

4.3.1. Contract representation

It is necessary to have electronic representations of contracts that can be used to mediate the
rights and obligations that each interacting entity promises to honour. This requirement
implies that the original natural language contract that is drawn by lawyers and other non-
technical people has to undergo a conversion process from its original format into a piece of
executable code or executable contract (x-contract for short) that works as a mediator of the
business conversations. This conversion process involves the creation, with the help of a
formal notation, of one or more computational models of the contract with different levels of
details.

We developed a general method of representing business interactions as FSMs using a widely
used modelling language Promela [9] and showed how it can be used to represent
permissions, obligations, prohibitions, actors (agents), time constraints, and message type
checking; that is, all the basic parameters that compose most typical business contracts. Our
motivations for using Promela here is that such a representation can be validated with the
help of the accompanying Spin model-checker tool [10].

We developed two levels of contract representation. (i) Implementation neutral: free of
technical details related to technology-related interactions; in other words, specifying only
business action interactions (for example, issue a purchase order, send payment, etc.). Such a
description can be model checked and used for improving the original natural language
contract to be free from various forms of inconsistencies as discussed in [11]. (ii)

TAPAS D20

18

Implementation specific: a representation (also amenable to model checking) that is a
refinement of the former to include technical details such as acknowledgements and
synchronization messages that form an important part of any implementation; the details will
vary depending upon the implementation techniques and standards that are selected (e.g.,
Rosettanet [12]). Such a representation can be used for implementing the actual x-contract for
business conversation mediator.

4.3.2. Deployment models for contract enforcement

Conceptually speaking an x-contract is placed in between the two business partners so that it
can observe their business interactions. Deployment can be either centralized or distributed.
Further, the x-contract could be reactive or proactive, giving us four deployment models
discussed below, where for illustration purposes we assume an interaction from buyer to
seller:

(i) Reactive Central: The contract is deployed in a trusted third party (TTP), see Fig. 6(a).
The job of the x-contract here is to intercept (1) and analyze (2) the messages exchanged
between the two business partners; correct messages are forwarded (3) to their final
destination whereas incorrect ones are dropped (3’).

(ii) Proactive Central: The contract is deployed in a TTP, see Fig. 6(b); the contract is
proactive in that it coordinates the conversational interactions between organisations by
invitation only. It sends (1) an invitation message to the business partner; the response is
received (2) by the x-contract and analyzed (3); correct messages are forwarded (4) to the
seller, whereas incorrect ones are dropped (4’).

(iii) Reactive Distributed: Distributed version of reactive central: the contract is split and
deployed in two TTPs, see Fig. 6(c).

(iv) Proactive Distributed: Distributed version of proactive central.

B (uyer) S (eller)
x-contract

trash
bin

1) 2) 3)

a)

3’)

B (uyer) S (eller)
x-contract

trash
bin

2)

3) 4)

b)

1)

4’)

B (uyer) x-contractB

trash
bin

1) 3)

3’)

c)

2) 5)
x-contractS

S (eller)

trash
bin

5’)

4)

B (uyer) S (eller)
x-contract

trash
bin

1) 2) 3)

a)

3’)

B (uyer)B (uyer) S (eller)S (eller)
x-contractx-contract

trash
bin

1) 2) 3)

a)

3’)

B (uyer)B (uyer) S (eller)S (eller)
x-contractx-contract

trash
bin

2)

3) 4)

b)

1)

4’)

B (uyer)B (uyer) x-contractBx-contractB

trash
bin

1) 3)

3’)

c)

2) 5)
x-contractSx-contractS

S (eller)S (eller)

trash
bin

5’)

4)

Fig.6. Deployment models (a) reactive central (b) proactive central and c) reactive
distributed.

 TAPAS D20

19

Which particular model is suitable in a given VO setting is a very interesting research
problem, worthy of further investigation. We note that distributed deployments face the
difficult challenge of keeping contract state information synchronised at both ends. For
example, a valid message forwarded by the buyer’s x-contract could be dropped at the seller’s
end because intervening communication delays render the message untimely (and therefore
invalid) at the seller side. State synchronisation is necessary to ensure that both the parties
either agree to treat the message as valid or invalid. Non-repudiable information sharing
protocol designed and implemented by us and discussed in deliverables D5 and D9 provides
such synchronisation (see also the next section).

4.3.2. Component middleware for trusted coordination

We developed two novel building blocks for regulated interaction between organisations:
non-repudiable service invocation (NR-Invocation) and non-repudiable information sharing
(NR-Sharing). Design of these building blocks has been described in the TAPAS deliverable
report D9 [4], where an implementation using the JBoss application server is also presented.
Here we summarise that design. We also describe how the ideas can be extended to the world
of Web services.

4.3.2.1. Non-repudiable service invocation (NR-Invocation)

We developed the abstraction of trusted interceptors that mediate inter-organisational
interaction and then model non-repudiable service invocation and non-repudiable information
sharing in terms of this abstraction. The trusted interceptor abstraction is sufficiently general
to apply to a variety of interaction scenarios. For example, it is not bound to any particular
non-repudiation protocols but can be seen as a flexible framework in which protocols can be
deployed as appropriate to the regulatory regime governing an interaction or to the trust
relationships between the parties to an interaction.

(b) Non-repudiable service invocation

req, NROreq

resp, NROresp

NRRresp

req

resp

req
resp

NRRreq

interceptor interceptor

Client Server

(a) Service invocation

request

responseClient Server

Fig. 7. NR-Invocation through trusted interceptors

Figure 7(a) shows a typical two-party, client-server interaction. The client invokes a service
by sending a request to the server who issues a response. Non-repudiable service invocation
provides the following assurances to the client:

TAPAS D20

20

1. that following an attempt to submit a request to a server, either: (a) the submission
failed and the server did not receive the request; or (b) the submission succeeded and
there is proof that the request is available to the server; and:

2. that if a response is received, there is proof that the server produced the response.

For the server, the corresponding assurances are:

1. that if a request is received, there is proof identifying the client who submitted the
request; and:

2. that following an attempt to deliver a response to the client, either: (a) the delivery
failed and the client did not receive the response; or (b) delivery succeeded and there
is proof that the response is available to the client.

To provide the above assurances, trusted interceptors execute a non-repudiation protocol that
ensures the following:

1. a request is passed to a server if, and only if, the client (or its interceptor) provides
non-repudiation evidence of the origin of the request (NROreq) and the server (or its
interceptor) provides non-repudiation evidence of receipt of the request (NRRreq)

2. the response is passed to the client if, and only if, the server (or its interceptor)
provides non-repudiation evidence of the origin of the result (NROresp) and the client
(or its interceptor) provides non-repudiation evidence of receipt of the response
(NRRresp).

Non-repudiation tokens include a unique request identifier, to distinguish between protocol
runs and to bind protocol steps to a run, and a signature on a secure hash of the evidence
generated. Figure 7(b) models the exchange of evidence achieved by the execution of an
appropriate non-repudiation protocol between interceptors acting on behalf of client and
server. The client initiates a request for some service. The client's interceptor generates an
NROreq token and then sends both the request and the token to the server's interceptor. The
server's interceptor generates an NRRreq token and returns it to the client's interceptor. The
server's interceptor then passes the request to the server to generate a response. On receipt of
the response, the server's interceptor generates an NROresp token and sends both the
response and the token to the client's interceptor. The interceptors ensure that irrefutable
evidence of the exchange is both generated and stored.

4.3.2.2 Non-repudiable information sharing (NR-Sharing)

Figure 8(a) shows three organisations (A, B and C) accessing and updating shared
information. If, for example, A wishes to update the information, then they must reach
agreement with B and C on the validity of the proposed update. For the agreement to be non-
repudiable: (i) B and C require evidence that the update originated at A; and (ii) A, B and C
require evidence that, after reaching a decision on the update, all parties have a consistent
view of the agreed state of the shared information. The latter condition implies that there
must be evidence that all parties received the update and all parties know whether there was
unanimous agreement to it being applied to the information. Figure 8(b) shows A proposing

 TAPAS D20

21

an update to the information shared by A, B and C. Interceptors are used to mediate each
organisation's access to the information. In step 1, A attempts an update to the information.
A's interceptor intercepts the update and, in step 2, executes a non-repudiable state
coordination protocol with B and C to achieve the following:

(a) Information sharing

Org. C

Org. B

Org.
A i

update

update

update

(b) Non-repudiable information sharing

2

Org.
A i1 3

interceptor

Org. B

interceptor

Org. C

interceptor
2

Fig. 8. NR-Sharing through trusted interceptors

1. That A's update is irrefutably attributable to A and proposed to B and C.

2. That B and C independently validate A's proposed update, using a locally determined
and application-specific process, and their respective decisions are made available to
A and are irrefutably attributable to B and C.

3. That the collective decision on the validity of the update (in this case, responses from
B and C to A) are made available to all parties (A, B and C).

If the resolution of the protocol executed at step 2 represents agreement to the update then the
shared information is updated in step 3. Otherwise, the information remains in the state prior
to A's proposed update. Non-repudiable connect and disconnect protocols govern changes to
the membership of the group of organisations sharing the information

The use of interceptor's allows us to abstract away the details of state coordination and
insulate the application from protocol specifics. From the application viewpoint, the update
to shared information is an atomic action that succeeds or fails dependent on the agreement of
the parties sharing the information. Thus the interceptors may execute any protocol that
achieves non-repudiable agreement on: the origin and state of a proposed update; the state of
the shared information after application of an update; and the membership of the group that
agreed to, or vetoed, the update.

4.3.2.3 Non-Repudiable Interactions with Web Services

The ideas presented in the previous two sections have been incorporated in the J2EE
middleware (JBoss application server), see deliverable D9 [4]. Despite the fact that Web
services are increasingly used for enabling B2B interactions, there is currently no systematic
support for non-repudiation. We have therefore extended our approach to Web Services: we
assume the typical pattern of XMLbased business messages that should be exchanged
between partners to execute some function (such as order processing). Our design and

TAPAS D20

22

implementation is based on a third party delivery agent (DA, a trusted third party) that takes
on most of the responsibilities of evidence verification and storage and, thereby, simplifies
the tasks for end users. Details are in deliverable D6 [7].

4.4. QoS monitoring and violation detection

As the name suggests, monitoring of contractual SLAs is about collecting statistical metrics
about the performance of a service to evaluate whether the service provider complies with the
level of QoS that the consumer expects. Such monitoring is frequently required to be carried
out with the help of third parties to ensure that the results are trusted both by the provider and
consumer. The state of art in the monitoring of SLAs by third parties is not yet well
advanced: current contracts frequently leave SLAs open to multiple interpretations because
they either contain ambiguous specifications of SLAs or no specification at all; likewise, they
often do not unambiguously specify how the QoS attributes are to be monitored and
evaluated.

The TAPAS QoS monitoring and violation detection subsystem (fig. 2) overcomes these
shortcomings. This subsystem could be provided by the ASP or one or more trusted third
parties. Second year deliverable report, D10 [5] described the design and implementation
this subsystem. In TAPAS, QoS requirements in SLAs are specified precisely using the
SLAng language described in deliverable report D2 [6]. Month 30 deliverable report D15 [2],
chapter 3, describes how QoS monitoring of the auction application was performed.

The architecture that we developed for monitoring the level of QoS delivered by a provider to
a given service consumeri at a given service point of presence ISPi, is shown in Fig. 9. In the
figure we assume that the interaction between the provider and the service consumer is
regulated by a signed contract. The goal of monitoring is to watch what a business partner is
doing, to ensure that it is honouring its obligations. We assume that monitoring is to be
carried out with the help of third parties to ensure that the results are trusted both by the
provider and consumer.

Notice that for the sake of simplicity only one point of presence and one service consumer is
shown in the figure. However, in a general scenario, the provider would have one or more
points of presence; each of them with an arbitrary number of service consumers.

To keep the figure and our discussion simple and without loosing generality we assume that
the provision of the service is unilateral, that is, only the provider provides a service. Because
of this, only the performance of the provider needs to be measured and evaluated. In practice,
it is quite possible to find applications with bilateral service provision, where the contracting
parties deliver something to each other and applications where the performance of the
consumer affects the performance of the provider. We will show the generalisation of our
architecture later. Though it is not shown in the figure, the assumption here is that the
business between the provider and each of its service consumers (service consumeri for
instance) is regulated by a signed contract. The contract clearly stipulates the SLAs at the
service point of presence. Similarly the contract stipulates metrics that are to be measured and
with which frequencies, to asses the performance of the provider. With these observations in

 TAPAS D20

23

mind, it makes sense to think that a provider will have several instances of the scheme shown
in the figure, that is, one instance for each of its service consumers.

ISPi
ISPi

ISP: Internet Service Provider; MeCo: Metric Collector
t1, t2: time intervals.
q: metric (e.g. latency) measured at t1 intervals
c: metric (e.g. No of requests) metric measured at t2 intervals

evaluation and
violation detection

service

measurement
service

probe/measure
q at t1

violation notification
subscription to S

LA
s

violation events

Service
consumeriProvider

MeCo

transfer measures
c at t2

retrieve c and q

MeCo

ISPi
ISPi

ISP: Internet Service Provider; MeCo: Metric Collector
t1, t2: time intervals.
q: metric (e.g. latency) measured at t1 intervals
c: metric (e.g. No of requests) metric measured at t2 intervals

evaluation and
violation detection

service

measurement
service

probe/measure
q at t1

violation notification
subscription to S

LA
s

violation events

Service
consumeriProvider

MeCo

ProviderProvider

MeCo

transfer measures
c at t2

retrieve c and q

MeCo

Fig. 9. Architecture for unilateral monitoring of QoS.

Two third party services are required:

• Measurement service: an enterprise trusted by the provider and the service consumer
and with expertise in measuring a given list of metrics at specifies intervals and
storing the collected results in its databases.

• Evaluation and detection violation service: an enterprise trusted by the provider and
the service consumer. It is there to retrieve metrics from the databases of the
measurement service, perform computation on them, compare the results of the
computation against high or low watermarks and send notifications of violations to
the service consumer when violations of SLAs are detected.

Notice that, for the sake of simplicity, in the figure we show single enterprises performing the
functions of the measurement, and the evaluation and detection violation services. In practice,
the measurement service can be performed by several enterprises that compensate their
functionality with each other or replicate them to provide more reliability. Naturally, the
evaluation and detection violation service can be realised in a similar way.

Notifications of violations are represented as events. We envisage an event notification
system offering the service consumer the possibility to subscribe to events in which it is
interested. It is not difficult to imagine that the service consumer can dynamically subscribe
and unsubscribe to different events, perhaps in accordance with the momentary needs of the
applications that it is running. To simplify the figure, notifications of violations are sent only

TAPAS D20

24

to the service consumer; however, these notifications can be sent to other parties (for
example, the provider) who express interest by means of subscriptions.

4.5. QoS aware middleware

As we have indicated earlier, practical networked systems are under increasing obligations to
provide certain levels of Quality of Service (QoS) to end users. Approaches to distributed
system designs have thus far assumed two broad classes of computational and
communication models: in the synchronous model, processing and communication delays are
considered to be uniformly distributed in a known range; in the asynchronous model on the
other hand, delays are finite but without any assumption on the ability to deduce delay
bounds or delay distribution. So, any bound on delays, deduced however judiciously, is
subject to being violated.

Basing the design of a system on the synchronous model will require careful provisioning of
system resources combined with a complete prior knowledge of the user environment. This
approach is only suited to a restricted set of applications. A system design based on the
asynchronous model can only guarantee eventual correctness, leaving QoS considerations as
an after-thought. Experience has shown that QoS provisioning, like many non-functional
system properties, cannot be achieved as an add-on feature, but rather should be a core
objective in the design process.

We developed a generic system model called the probabilistic asynchronous model which we
claim characterises the context in which many practical and the Internet-based applications
are built. Specifically, our model regards that basic services and system components (e.g.,
network services) do meet their performance requirements most of the time, and occasionally
they may not; only when they don’t, they adhere to the classical asynchronous model. Our
design approach draws from, and combines probabilistic design techniques and asynchronous
ones. Its objective is to render systems that adaptively meet QoS obligations to the end users
when system components meet their QoS guarantees or violate them only marginally;
eventual correctness is never compromised when components fail in their QoS obligations.

There are several factors that can perturb a system’s ability to maintain the QoS level desired
by an end user. For example, a new user may request services with some specified QoS or an
existing user may dynamically request for an enhanced level of QoS for the on-going service
provisioning. In these occasions, the system has to be able to evaluate if the request can be
met without jeopardising the QoS commitments already in force. Thus, a QoS enabled system
should essentially be able to evaluate the feasibility of QoS provisioning and, where and if
possible, to adapt itself when QoS perturbs are encountered. The system in essence needs to
be QoS adaptive in nature. The adaptation can range from adjusting the operational
parameters (e.g., reducing the level of redundancy) to, at the extreme end, deploying
additional resources such as computational capacity, bandwidth and storage.

In TAPAS we developed two QoS aware middleware systems/services: group
communication and application server.

 TAPAS D20

25

4.5.1. QoS-Enabled Group Communication

In TAPAS, we focused on the development of QoS enabled multi-party communication to
support applications that require information dissemination to many processes (e.g., in
distributed games). For such applications we concentrated on QoS properties of fault
tolerance, availability, and timeliness. Currently, strict separation exists between the
middleware that executes application services and the network, so providing services that go
beyond ‘the best effort’ is difficult.

The designed system, then, offers a so-called QoS-Enabled Reliable Multicast Service, and is
capable of providing probabilistic guarantees on latency bounds as well as probability of
success. Guarantees rely on a previous QoS negotiation with the system user, with the system
capable of either accepting or refusing the service request based on an analytical
approximation of the network behaviour in the near future.

4.5.1.1. Architecture

The group communication (GC) system designed for the TAPAS project is composed by
three main components, described in deliverable report D8 [13].

The Negotiation Component (NC) is in charge of negotiating the QoS request with the
system’s client. It relies on an analytical approximation of the network behaviour, and
provides the Reliable Multicast Service Component with a series of parameters fine-tuned so
as to fulfil the agreed service level.

The Reliable Multicast Service Component (RMC) realizes the Reliable Multicast logic. Its
algorithm is based on the originator broadcasting ρ redundant copies of the same message,
where ρ is the level of redundancy, to the other group members. Each broadcast is separated
by a η interval time, chosen to be as small as possible but big enough to guarantee failure
independence. Both η and ρ are dynamically generated from the NC after (successful)
negotiations, and passed afterwards to RMC. On the receiving side, upon reception each
receiver sets a timeout within which it expects to receive next copy of the message.
Reception of such copy in time means that the protocol is progressing well. If the timeout
expires, the receiver pessimistically assumes the originator to have crashed, and tries to
appoint itself as new broadcaster. To avoid multiple receivers to act this way at the same
moment, drastically increasing the message overhead, a selection procedure guarantees that
only one receiver will be selected as new broadcaster. The protocol features, moreover, two
types of adaptation, to reduce message overhead and to adapt to unforeseen environmental
(i.e. network) changes. They both rely on relaxation/stretching of some system timeouts.

The Network Monitoring Component (NMC) monitors the network to detect a set of
parameters useful to the NC to approximate network’s behaviour. Parameters monitored are
average packet delay and loss, average jitter and an approximation of the packet delay
distribution curve into a well known statistical distribution. The NMC is based on a
mechanism that gathers all needed information by means of an RTT-based technique, whose
data is after processed and averaged over fixed amounts of time so as to obtain desired data.
Once data is calculated, the set of four parameters is passed to the NC that uses them for the
approximation.

TAPAS D20

26

The idea behind this organization is that the RMC offers a service that is based on certain
guarantees, provided by the NC and validated by the NMC.

4.5.1.2. Components Interoperation

The architecture is assumed to be instantiated on each member, and components are assumed
to interoperate in a local context: each process using the system will have all three
components locally instantiated. When a user comes and asks for a service, it provides the
system with a required delay and probability of success. The first component to be
instantiated is the NC that, in turn, instantiates and starts the NMC. The NC takes then the
user-requested parameters and match them against the ones obtained by means of
approximations (evaluated on the base of network metrics provided by the NMC).
Approximation generation involves production of a set of parameters that determine RMC
properties, which are fine-tuned so as to put RMC in a situation of being able to fulfil the
requested service. Once negotiation is over and successful, the RMC is instantiated and
parameters are passed to start the protocol. Even after the protocol has started, both the NC
and the NMC continue their own execution: the NMC monitors the network on a constant
basis, and it constantly passes network metrics to the NC that, in turn, re-approximates the
network behaviour and eventually updates values on behalf of the RMC so as to keep its
execution consistent with the expected network behaviour.

4.5.1.3. Integration

The Application Server platform used for the TAPAS project is JBoss [14]. Group
Communication is used, in JBoss, to implement the transport layer of the clustering
technique. This whole transport layer is based on JGroups [15], whose architectural core is
represented by a stack of Protocol objects that the user spans in the client application.
Each Protocol realizes a specific task, and, taking care of eventual dependencies,
juxtaposition of multiple objects offer a more complete service. Our system has been
converted into JGroups format and included in the set of available Protocols with the
name RMCAST.

4.5.2. QoS-aware application server

We have designed and developed a family of middleware services that extend current, J2EE-
based, open-source application server technology so as to enable it to meet QoS application
requirements, such as timeliness, availability, and throughput. We have termed QoS-aware
application server an application hosting environment designed to honour the hosting Service
Level Agreements (SLAs); i.e., the SLAs that bind that environment to the applications it
hosts.

Current J2EE-based application server technologies (e.g., JBoss [14], JOnAS [16], WebLogic
[17], WebSphere [18]) can meet only partially QoS requirements such as availability,
timeliness, security, and trust of the applications they host, as these technologies are not fully
instrumented for meeting those requirements (i.e., they are not designed to be QoS-aware).

 TAPAS D20

27

In order to construct such an environment, the hosting SLAs are to be enforced, and
monitored at run-time. This entails that possible deviations of the QoS delivered by a hosting
environment from that expected by the application, and specified in the relative hosting SLA,
must be detected, and corrective actions taken, before this SLA be violated.

In order to carry out SLA enforcement and monitoring within an application service
environment, we have developed two principal middleware services, namely a Configuration
Service (CS) and a Monitoring Service (MS), which can be incorporated in the current
application server technology.

In addition, as advanced application server technology such as JBoss, enables hosting of
distributed, component-based applications within a cluster of application servers, the
middleware services mentioned above have been designed so as to exercise SLA enforcement
and monitoring over clustered application servers.

Typically, clustered servers can be used in order to provide the applications with a highly
available, fault tolerant, and scalable hosting environment. For both performance and fault
tolerance purposes, load balancing is to be deployed within a cluster of application servers so
as to distribute appropriately the computational load amongst those servers.

Current open source, J2EE technology (e.g., JOnAS, JBoss) offers load balancing services
which implement simple, non adaptive load distribution strategies. However, static load
distribution may affect the QoS delivered by an application server cluster. In order to
overcome this shortcoming, we have developed a Load Balancing Service that incorporates
an adaptive load balancing strategy. This strategy can cope effectively with run time
variations of both the clustered servers computational load, and the cluster configuration.

The principal responsibilities of the Configuration, Monitoring, and Load Balancing Services
introduced above are summarised below (for details, see deliverable D11 [3]).

The CS is responsible for configuring an application hosting environment (be this a single
application server, or a cluster of servers) so that it meets effectively the hosting SLA of a
customer application. Thus, in essence, the CS takes in input a customer application hosting
SLA, and discovers the available system resources that can honour that SLA. Provided that
those resources be sufficient to meet that input SLA, the CS reserves those resources,
generates a so-called “resource plan” (i.e., the QoS levels the application expects from the
hosting environment resources) for the hosted application, and sets up the QoS-aware
application hosting environment for that application. In case the CS discovers that there are
not sufficient resources to host that application, it returns an exception. (Typically, one such
an exception can be handled either by rejecting the application hosting request, or by offering
a reduced service, for example, depending on the policy implemented by the Application
Service Provider owning the hosting environment.)

The MS is responsible for monitoring the hosting environment at application run time, so as
to detect possible violations of the hosting SLA. In order to prevent those violations, the MS
takes appropriate actions if it discovers that the QoS delivered by the hosting environment
reaches a predefined warning point (i.e., a level of QoS beyond which SLA violation may
occur). Thus, for example, the MS can make use of a predefined “overload” warning point in

TAPAS D20

28

order to detect dangerous load conditions that may lead to server overloading. In case that
warning point is reached, the MS invokes the CS, and requires that the application hosting
environment be reconfigured appropriately, so that it can adapt to the new load conditions,
and continue to honour the application SLA.

It is worth observing that the CS and the MS exercise their activity over both the internal
resources of each application server instance in the application hosting environment, and the
set of clustered server instances that form this environment; i.e., they are responsible for
configuring and monitoring both a single application server and a cluster of servers.

Owing to this observation, the CS and the MS can be conveniently thought of as operating at
two distinct levels of abstraction, that we have termed the micro-resource and the macro-
resource levels, respectively. The former level consists of resources, such as server queues,
thread and connection pools, internal to each individual application server; the latter level
consists of such resources as the group of clustered application servers, and their IP
addresses.

Thus, for example, the CS at the micro-resource level is responsible for sizing appropriately
an application server request queue, in order to enable that server to deal with an (anticipated)
maximum number of concurrent requests, and to maintain its responsiveness. In contrast, in
order to meet possible load balancing and responsiveness requirements, the CS at the macro-
resource level may have to modify the cluster configuration at application run time, e.g., by
enabling one (or more) new application server instance(s), or by replacing a crashed
application server instance with an operational one.

The MS at the micro-resource level monitors the QoS (e.g., throughput, response time)
delivered by the single application server, and requires the server reconfiguration when the
delivered QoS reaches a predefined warning threshold. At the macro-resource level, instead,
the MS monitors the QoS delivered by the clustered application servers, and requires cluster
reconfiguration in case the cluster delivered QoS reaches a predefined warning threshold.

The interface between the micro and the macro resource levels can be thought of as
consisting of primitive operations and data objects that enable the macro-resource level both
to obtain micro-resource QoS data (e.g., server throughput, server response time, JVM free
memory) from the micro-resource level, and to provide this level with QoS requirements
derived from the SLA.

The Load Balancing Service for clustered application servers has been designed so as to
support both “request-based” (or “per-request”) load balancing, and a “session-based” (or
“per-session”) load balancing.

In “request-based” load balancing, each individual client request is intercepted by the Load
Balancing Service, and dispatched to an application server for processing, according to some
specific load distribution policy. Thus, two consecutive requests from the same client may be
dispatched to two different servers.

In contrast, in “session-based” load balancing, a specific client session (i.e., a sequence of
client requests) is created in one of the clustered application server, at the time a client
program requires access to the application hosted by that server; every future request from

 TAPAS D20

29

that client will be processed by that server (these client-server sessions are termed “sticky
sessions”). Thus, the Load Balancing Service intercepts each client request and, depending on
the sticky session the request belongs to, dispatches it to the appropriate server.

Fig. 10 shows the main features of our load balancer. User requests are being sent to a host of
the cluster whereby a HTTP load balancer is working as a reverse proxy. Hence, this load
balancer is responsible for (i) intercepting all the requests coming from the clients, (ii)
choosing the nodes to forward the requests in order to balance the load (dashed lines in Fig.
10). This is carried out by the load balancer scheduler which chooses the target node
according to an adaptive load balancing strategy), (iii) receiving the response back from the
chosen hosts and finally (iv) giving back the response to the client.

HTTP request

HTTP request

Primary

.

.

.

Browser

Clients

JBoss TAPASCluster

Tomcat
(Web

Container)

EJB
Container

HTTP Load
Balancer

Other
Services

TAPAS Extension Middleware

Tomcat
(Web

Container)

EJB
Container

HTTP Load
Balancer

Other
Services

TAPAS Extension Middleware

Tomcat
(Web

Container)

EJB
Container

HTTP Load
Balancer

Other
Services

TAPAS Extension Middleware

Browser

Fig. 10. Load balancing

Finally, we have carried out an extensive experimental evaluation of an implementation of
our services, integrated in a cluster of JBoss application servers, and compared and contrasted
our implementation with a cluster of standard JBoss node (i.e., not including our additional
services). The results of this experimental evaluation indicate the adequacy of our approach
as, in summary, our services i) add negligible overheads to the standard JBoss, yet providing
a robust and reconfigurable environment, and ii) enable a hosting environment that can
respond effectively the hosting SLA without the need for resources over-provision. In
contrast, standard application server technology, such as JBoss, may well be able to meet a
hosting SLA, indeed; however, this is to be done at the cost of resource over-provision.

4.6. Integration and Evaluation

An instance of the TAPAS architecture (fig. 2) has been implemented. We have also
implemented the auction application (fig. 1) to run on the TAPAS platform. The auction

TAPAS D20

30

application runs on a cluster of application servers(assumed to belong to an ASP) that has
been enriched with TAPAS features. A load generator has been used to exercise the
application.

The auction application scenario was chosen, because it provides a variety of interacting
parties, each of which is interested in different aspects of QoS. However, during the project
runtime discussion led to the basic question, if an application shall or shall not be aware of
QoS-monitoring and related services. If is obviously beneficial to be able to deploy a QoS-
unaware application to a QoS-platform, thus gaining QoS-monitoring and even SLA-aware
reconfiguration of resources. Hence the auction application could be realized indeed without
explicitly using TAPAS technology. On the other hand it should be noted, that real-world
applications tend to follow J2EE concepts only to a certain point, because in some cases
there currently still are better solutions outside J2EE, e.g. when accessing large sets of data.

The integration, demonstration and evaluation exercise has been described in deliverable
reports D15 [2] and D14 [19].

4.6.1. SLA monitoring

A third party service is able to monitor the electronic service SLA (specified in SLang)
reporting any violations.

Service Provider
(Auction Server)

Service Consumer
(Bidder)

Measurement Service

MeCo

MeCo ISP

SLAng
Engine

SOAP

JMS

probe calls

metric data

SLA
violations SLA

violations
SLA event

subscriptions

SLA event
subscriptions

Fig. 11. SLA monitoring architecture

Different mechanisms are provided by TAPAS to suite the different types of stakeholders.
An ASP can of course read the data that has been produced by the TAPAS middleware. The
same data can be used by an external party, be it the client himself or a trusted third party to
check it against SLA regulations. When considering the stakeholders it should be mentioned
that the TAPAS middleware allows to monitor the QoS of External Services that are used by
a hosted application. They can easily be monitored regarding their SLA fulfilment by using
the TAPAS technology by wrapping the otherwise TAPAS-unaware external service into a
dedicated component, be it a single Session Bean, a JCA adaptor or even an own J2EE
application. For existing applications this of course would lead to the necessity of
restructuring the conventional service invocation to use such a session bean, for instance, if
the application architecture does not provide own wrapping elements.

 TAPAS D20

31

4.6.2. Terms and conditions contract monitoring and enforcement

The inter-organisation interaction regulation system of the TAPAS architecture ensures that
only valid interactions (as defined in the contract) take place and non-repudiation information
is automatically generated. It was relatively easy to construct FSMs for representing
contractual conversations.

In normal operation, an auctioneer and at least two bidders will submit valid requests to
which the middleware will attach well-formed non-repudiation evidence. The requests will
follow the full lifecycle of an auction from bidder registration to auction closure. The
evidence for correct operation of the middleware will be that:

1. for each correctly behaving client, there is a full set of entries in both client-side and
service-side non-repudiation logs. The logs will in effect be a non-repudiable trace of
the execution of the application as represented by the client requests. Each NRRreq
entry in a log will include a decision attesting to the validity of the related request.

2. from the point of view of each correctly behaving client, the auction will progress
normally to completion, and the application state will change in response to their
requests.

If a bidder uses an invalid key to sign request data then:

1. the bidder’s client-side non-repudiation log will contain an NROreq entry but, since
the request was mal-formed and failed verification, there will be no corresponding
entry in the service-side log.

2. no NRRreq will be returned by the service. Instead, an error will be propagated to the
client indicating failure of the request.

3. the request will not be passed to the application and application state will not be
changed as a result of the request

Contract violation: in this case one or more clients will generate a request that violates
contract terms and conditions. For example, in an auction round, a bidder will attempt to
place a bid after a previous bid from them has been accepted in the given round. In this case,
the following happens:

1. both bidder and service-side logs contain NROreq and NRRreq evidence. However,
the NRRreq evidence will attest that the related request was invalid with respect to
contract.

2. an error will be propagated to the client indicating failure of the request.

3. the request will not be passed to the application and application state will not be
changed as a result of the request.

TAPAS D20

32

4.6.3. QoS enabled application server

We have carried out an extensive experimental evaluation of our platform, and compared and
contrasted our implementation with a cluster of standard JBoss nodes (i.e., not including our
additional services). These are described in detail in D11 [3]. For our initial tests we have
used a cluster configuration consisting of three application servers running on three Linux
machines interconnected by a 100Mb Ethernet LAN. Each machine was 2.4 GHz Pentium 4,
with 512MB of RAM. The three machines were dedicated to our experiments.

The test discussed here was intended to show the effectiveness of the TAPAS clustering
mechanism in order to prevent SLA violations. Specifically, we have considered the
following case. We have assumed that a possible ASP policy dictates that application
deployment be carried out using the minimal set of resources which are required to run the
application; hence, for example, an application is deployed on a single application server, if
possible. A single application server may reach the response time and throughput breaching
points, thus violating the hosting SLA, if it is not instrumented to reconfigure dynamically,
prior to the SLA violation.

1028.5

845.5

0

200

400

600

800

1000

1200

JBoss+Mod_jk
(17,79%)

JBoss+TAPAS (with
reconfiguration offline

with C program)

JBoss + Mod_jk with 1 host and JBoss + TAPAS with
one host and a 2 instances start up reconfiguration
(With Sticky Sessions and 50 clients and 10 loops

per each client)

Response Time

Figure 12: JBoss vs. TAPAS JBoss: response time

Thus, we have compared and contrasted the deployment of our test application on a standard
JBoss application server, equipped with mod-jk, with that of the same application on a
TAPAS extended JBoss server, with per-session load balancing enabled, and two spare
application servers for use for dynamic reconfiguration purposes. In this test, 50 clients were
concurrently accessing the hosted application. The results of this test are depicted in Figures
12 and 13.

Figure 12 shows that the TAPAS middleware, with dynamic reconfiguration and load
balancing, allows the application server to maintain the average response time below 850 ms.
The standard JBoss, instead, provides an 18% slower response time than the TAPAS
extended JBoss, approximately, as it is unable to apply reconfiguration, when necessary.

 TAPAS D20

33

45.2

52.45

40

42

44

46

48

50

52

54

JBoss+Mod_jk
(13.82%)

JBoss+TAPAS (with
reconfiguration
offline with C

program)

JBoss + Mod_jk with one host and JBoss +
TAPAS with one host and a 2 instances start
up reconfiguration (With Sticky Sessions and

50 clients and 10 loops per each client)

Throughput

Figure 13: JBoss vs. TAPAS JBoss: throughput

Similarly, Figure 13 shows that the standard JBoss throughput is approximately 14% lower
than that generated by the JBoss application server extended with the TAPAS middleware
(owing to the same motivation as above).

4. 6.4. QoS enabled group communication

The auction application is not ideal for illustrating the features of the group communication
system. We have therefore developed a separate application: a distributed collision detection
system as required in distributed games/virtual reality applications.

A real-time collision detection service that supports QoS guarantees suitable for satisfying
the collision detection requirements of graphically represented 3D virtual worlds. Our
approach is a distributed one, allowing our real-time collision detection service to scale to
support complex virtual worlds via the use of clustered servers. We base our service on QoS
enabled group communications middleware to enable a deterministic approach to satisfying
the QoS requirements of virtual worlds. Our approach is adaptive in that we always guarantee
real-time requirements of a virtual world via the adaptation of the accuracy of collision
detection in runtime to offset varying processing availability or message latency. Our
experiments, described in deliverable D15, show that in such a system, QoS enabled group
communication system is invaluable.

5. Deliverables

Project results are documented in the following deliverables.

5.1. Deliverable Reports

D1: Application Hosting and Networking Requirements

TAPAS D20

34

D2: Specification Language for SLAs

D3: Method for Service Composition and Analysis

D4: Service Composition & Analysis Tool

D5: TAPAS Architecture: Concepts and Protocols

D5Supplement: An Overview of the TAPAS Architecture

D6: TAPAS Architecture

D7: TAPAS Architecture: QoS Enabled Application Servers

D8: QoS adaptive Group Communication

D9: Component middleware for Trusted Coordination

D10: QoS Monitoring of Service Level Agreements

D11: QoS-aware Application Server: Design, Implementation, and Experimental Evaluation

D12: First year Evaluation and Assessment Report

D13: Second Year Evaluation and Assessment Report

D14: Third Year Evaluation and Assessment Report

D15: TAPAS QoS-aware Platform: technology and demonstration

D16: Dissemination and Use Plan

D17: Updated Dissemination and Use Plan

D18: Technological Implementation Plan

D19: Project Presentation

D20: Final Report

PP1-3: Periodic Progress Reports

PM1-3: Periodic Management Reports

5.2. Software

TAPAS software developed under deliverables D4 (service composition and analysis), D8
(QoS aware group communication), D9 (trusted coordination), D10 (QoS monitoring) and
D11 (QoS aware application server) has been made available in open source form at
sourceforge.net (http://tapas.sourceforge.net). Given the use of JBoss application server
within the project, it seems natural to seek closer collaboration with the JBoss organisation
that develops the open source application server. Accordingly, the project team has enlisted
itself as academic partners with them (there is a link to TAPAS on the main JBoss site)

 TAPAS D20

35

6. Dissemination and Exploitation

6.1. TAPAS Industrial Advisory Board

To help assess the progress we are making in the project, we formed an Industrial Advisory
Board. The role of the advisory board was (i) to guide and validate our research; and (ii) to
provide a means of dissemination of our results. The Board met at the end of each year. As a
matter of fact, the members of the advisory board acted as external evaluators of the progress
of our work. The appendix describes the membership of the Board.

6.2. Workshops and Conferences

Project results were presented at a number of international conferences and workshops. The
full list appears in the deliverable report D14. We would like to highlight here one workshop
that was organised by TAPAS partners.

The Workshop on Quality of Service for Application Servers 2004 (QoSAS'04), in
conjunction with IEEE 23rd Symposium on Reliable Distributed Systems(SRDS 2004),
Jurerê Beach Village, Santa Catarina Island, Brazil, 17 October2004 was organised by
TAPAS members to provide a forum for researchers, application designers and users to
review, discuss and learn about new approaches and concepts in application server QoS
development. The topics of the workshop reflected the work carried out in the TAPAS
project. As such, the workshop provided an ideal opportunity to disseminate the ongoing
results from the TAPAS project to an audience of academics and industrial professionals. In
addition, work from others (non TAPAS members) were also presented at the workshop,
providing an excellent opportunity for members of the TAPAS project to learn from other
academics/industrialists carrying out work in similar areas.

All the papers submitted to the workshop were reviewed by at least three members of the
Program Committee (constituted from industrial/academic experts in distributed systems
research). Seven papers were selected as regular papers. These paper presentations were
complemented by an invited talk and a panel session.

The workshop was organised in five sessions. The first session was an invited talk given by
Dr. Graeme Dixon from IBM on recent developments of IBM's application server
(WebSphere). The focus of the second session (adaptability) was on how application servers
may be configured during run-time to make best use of processing resources while still
satisfying QoS guarantees. The third session (scheduling) presented work aimed at satisfying
the QoS requirements of real-time systems. The fourth session (web services) presented
research associate to satisfying QoS requirements of service based architectures. Finally, the
fifth session was a panel discussion entitled "research challenges for application server
developers". The workshop was a success, attracting paper submissions from over ten
different countries and delegates from both academia and industry.

TAPAS D20

36

6.3. Research papers and articles

The project has been particularly successful in producing a number of refereed research
publications. These are listed here.

Year 2002

W. Emmerich:

Distributed Component Technologies and their Software Engineering Implications

Proc. of the 24th Int. Conference on Software Engineering, Orlando, Florida. pp. 537-546.
ACM Press. 2002

G. Piccinilli, W. Emmerich, C. Zirpins and K. Schuett:

Web Services Interfaces for Inter-organizational Business Processes: An Infrastructure for
Automated Reconciliation

In Proc. of the 6th IEEE Int. Conference on Enterprise Distributed Object Computing,
Lausanne, IEEE Computer Society Press. pp. 285-292. 2002

W. Emmerich and N. Kaveh:

Component Technologies: Java Beans, COM, CORBA, RMI, EJB and the CORBA
Component Model

Proc. of the 24th Int. Conference on Software Engineering, Orlando, Florida. pp. 691-692.
ACM Press. 2002

N. Cook, S.K. Shrivastava and S.M. Wheater:

Distributed Object Middleware to Support Dependable Information Sharing between
Organisations

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN-2002),
June 2002, Washington DC

S.K. Shrivastava:

Middleware for supporting inter-organisational interactions

Proceedings of Workshop on Future Directions in Distributed Computing (FuDiCo),
Bertinoro, Italy, June 02

E. Turrini and F. Panzieri:

Using P2P Techniques for Content Distribution Internetworking: A Research Proposal

in proceedings of the 2nd IEEE International Conference on Peer-to-Peer Computing,
Linköping, Sweden, 5-7 Sept. 2002

 TAPAS D20

37

G. Lodi:

End-to-end QoS-aware Middleware Services

7th Cabernet Radical Workshop, Bertinoro (FC), Italy, 13-16 Oct. 2002

E. Turrini

A Platform for Request Routing in Content Distribution Internetworks

7th Cabernet Radical Workshop, Bertinoro (FC), Italy, 13-16 Oct. 2002

N. Mezzetti and F. Panzieri:

The Data Grid: Security and Privacy Issues

Proc. 4th European Dependable Computing Conference, Toulouse (F), 22-25 Oct. 2002

A. Aldini, M. Bernardo, R. Gorrieri and M. Roccetti:

QoS Evaluation of IP Telephony Services: A Specification Language Based Simulation
Software Tool

Systems Analysis Modelling Simulation, Taylor and Francis Group Pub., accepted for
publication, December 2002

Year 2003

A. Di Ferdinando, P. McKee and A. Amoroso:

A Policy Based Approach for Automated Topology Management of Peer To Peer Networks
and a Prototype Implementation

G.N. Rodrigues, G. Roberts, W. Emmerich and J. Skene:

Reliability Support for the Model Driven Architecture

In Proceedings of the ICSE Workshop on Software Architecture for Dependable Systems
2003 (RRES03: Reliability Support), ICSE 2003

D.D. Lamanna, J. Skene and W. Emmerich:

SLAng: A Language for Service Level Agreements

In Proceedings of the 9th IEEE Workshop on Future Trends in Distributed Computing
Systems (LSE03: SLAng), 2003, (pages 100-106) IEEE Computer Society Press.

D.D. Lamanna, J. Skene and W. Emmerich:

SLAng: A Language for Defining Service Level Agreements

Accepted for Poster presentation, Middleware 2003, Rio de Janeiro, Brazil

TAPAS D20

38

N. Kaveh and W. Emmerich:

Validating Distributed Object and Component Designs

in Formal Methods for Software Architecture, Springer Verlag, Lecture Notes in Computer
Science, vol. 2804, 2003, pages 63-91, Edited by M. Bernardo and P. Inverardi KE03:
Validating)

J. Skene and W. Emmerich:

Model Driven Performance Analysis of Enterprise Information Systems

In Proc. of International Workshop on Test and Analysis of Component Based Systems,
Warsaw, April 13th, 2003 in conjunction with European Joint Conferences on Theory and
Practice of Software (ETAPS) 2003. And in Electronic Notes in Theoretical Computer
Science, April 2003, vol. 82, number 6 (SE03: Performance)

C. Molina-Jimenez, S.K. Shrivastava, E. Solaiman and J. Warne:

Contract Representation for Run-time Monitoring and Enforcement

IEEE Conference on Electronic Commerce (CEC’03), Newport Beach, CA, June 2003, pp.
103-110

A. Amoroso and F. Panzieri:

A scalable architecture for responsive auction services over the Internet

TR UBLCS-2003-09, Dept. of Computer Science, University of Bologna, June 2003

E.Turrini:

Dependability Issues in Content Distribution Internet-working

in Proc. of the International Conference on Dependable Systems and Networks, Student
Forum, June 2003

G. Lodi and F. Panzieri:

JBoss vs. JOnAS

TAPAS Project Internal Report, June 2003

W. Beckmann and M. Koßmann:

An Answer to the JBoss vs. JOnAS Comparison

adesso AG, 30 June 2003

J. Crowcroft, S. Hand, R. Mortier, T. Roscoe and A. Warfield:

QoS`s Downfall: At the bottom, or not at all!

 TAPAS D20

39

In Proceedings of the ACM Workshop on Revisitng IP Quality of Service (RIPQoS), pp. 109-
114, August 2003, Karlsruhe, Germany

P. Gevros:

Internet Service Differentiation using Transport Options: the case for policy-aware
congestion control

In Proceedings of the ACM Workshop on Revisitng IP Quality of Service (RIPQoS), pp. 151-
157, August 2003, Karlsruhe, Germany

P.D. Ezhilchelvan and S.K. Shrivastava:

Systematic Development of a Family of Fair Exchange Protocols

Seventeenth Annual IFIP WG 11.3 Working Conference on Data and Applications Security,
Estes Park, Colorado, August 2003

S. Ferretti and M. Roccetti:

On Designing an Event Delivery Service for Multiplayer Networked Games: An Approach
based on Obsolescence

Proc. 7th International Conference on Internet, Multimedia Systems and Applications (IMSA
2003), Honolulu, (HI), August 2003

M. Roccetti and P. Salomoni:

The Design and Performance of a Wireless Internet Application for Supporting Multimedia
City Guides

Proc. IEEE International Conference on Information Technology: Research and Education
(ITRE 2003), Newark (NJ), August 2003

N. Mezzetti:

Towards a Model for Trust Relationships in Virtual Enterprises

In Proceedings of 14th Database and Expert Systems Applications (DEXA'03) Workshop, 1 -
5 September 2003, Prague (Czech Republic)

J. Skene, G. Piccinelli and M. Stearns:

Modelling Electronic Service Systems Using UML

in Workshop on Service Based Software Engineering, FM2003-SBSE, Pisa, Italy, 2003,
September, "Technische Universität München", pages15—30, url:
http://www.cs.ucl.ac.uk/staff/J.Skene/phd/sbse2.pdf (SPS03: Modelling)

A.I. Kistijantoro, G. Morgan, S.K. Shrivastava and M.C. Little:

Component Replication in Distributed Systems: a Case study using Enterprise Java Beans

TAPAS D20

40

22nd IEEE/IFIP Symposium on Reliable Distributed Systems (SRDS2003), Florence, October
2003, pp. 89-98, ISBN: 0-7695-1955-5

J.Skene and W. Emmerich:

A Model Driven Architecture Approach to Analysis of Non-Functional Properties of
Software Architectures

In Proceedings of the 18th IEEE Conference on Automated Software Engineering (SE03),
October 2003, Montreal, Canada (pages 236-239), 2003. IEEE Computer Society Press

E. Turrini:

A Protocol for exchanging performance data in Content Distribution Internetworks

8th CaberNet Radicals Workshop, Ajaccio, Corsica, 5 - 8 October 2003

N. Cook, S.K. Shrivastava and S. Wheater:

Middleware Support for Non-repudiable Transactional Information Sharing between
Enterprises

4th IFIP International Conf. on Distributed Applications and Interoperable Systems, DAIS
03, November 2003, Paris

E. Solaiman, C. Molina-Jimenez and S.K. Shrivastava:

Model Checking Correctness Properties of Electronic Contracts

International Conference on Service Oriented Computing, Trento, November, 2003. Lecture
Notes in Computer Science Vol. 2910, Springer (2003).

E. Turrini:

An architecture for Content Delivery Networks federation

CaberNet Plenary Workshop, 5-7 November 2003, Porto Santo, Portugal

E. Turrini:

Analyzing web response time

CaberNet Plenary Workshop, 5-7 November 2003, Porto Santo, Portugal

Year 2004

C. Molina-Jimenez, S.K. Shrivastava, E. Solaiman and J. Warne:

Run-time Monitoring and Enforcement of Electronic Contracts

Electronic Commerce Research and Applications (ECRA), Elsevier, Vol. 3, No. 2, 2004

G. Denaro, A. Polini and W. Emmerich:

 TAPAS D20

41

Early Performance Testing of Distributed Software Applications

in Proceedings of the 4th Int. Workshop on Software and Performance, San Francisco,
January 2004 (ACM Press)

E. Turrini and V. Ghini:

A Protocol for exchanging performance data in Content Distribution Internetworks

3rd International Conference on Networking (ICN'04), February 29 - March 4, 2004 – Creole
Beach Hotel, Gosier, Guadeloupe, French Caribbean

N. Cook, P. Robinson and S.K. Shrivastava:

Component Middleware to Support Non-repudiable Service Interactions

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2004),
Florence, June 2004, pp. 605-614.

C. Molina-Jimenez, S.K. Shrivastava, J. Crowcroft and P. Gevros:

On the Monitoring of Contractual Service Level Agreements

The First IEEE International Workshop on Electronic Contracting (WEC), July 2004, San
Diego

J. Skene, D. Lamanna and W. Emmerich:

Precise Service Level Agreements

In Proc. of the 26th Int. Conference on Software Engineering, Edinburgh, UK, Sept. 2004.
ACM Press

L. Capra. "Engineering Human Trust in Mobile System Collaborations". In Proc. of the 12th
International Symposium on the Foundations of Software Engineering (SIGSOFT 2004/FSE-
12). November 2004.

L. Capra. "Towards a Human Trust Model for Mobile Ad-hoc Networks". In Proc. of 2nd
UK-UbiNet Workshop. May 2004, London, United Kingdom

N. Mezzetti, ``Enabling Trust-Awareness in Naming Services'', Proceedings of the 1st
International Conference on Trust and Privacy in Digital Business, Lecture Notes in
Computer Science, Springer-Verlag, Vol. 3184, pp. 20-29, 2004.

N. Mezzetti:

A Socially Inspired Reputation Model, Lecture Notes in Computer Science, Springer-Verlag
GmbH, Volume 3093 / 2004: Public Key Infrastructure: First European PKI Workshop:
Research and Applications, Samos Island, Greece, June 25-26, 2004, Editors: Sokratis K.
Katsikas, Stefanos Gritzalis, Javier Lopez

Giorgia Lodi, Fabio Panzieri:

TAPAS D20

42

"QoS-aware Clustering of Application Servers", Proc. 1st IEEE International Workshop on
Quality of Service in Application Servers (QoSAS 2004), in conjunction with 23rd
Symposium on Reliable Distributed Systems (SRDS 2004), Jurerê Beach Village, Santa
Catarina Island, Brazil, 17 October 2004.

Davide Rossi, Elisa Turrini:

"Testing J2EE clustering performance and what we found there", Proc. 1st IEEE
International Workshop on Quality of Service in Application Servers (QoSAS 2004), in
conjunction with 23rd Symposium on Reliable Distributed Systems (SRDS 2004), Jurerê
Beach Village, Santa Catarina Island, Brazil, 17 October 2004.

Di Ferdinando A., Ezhilchelvan P.D., Mitrani I.:

"Design and Evaluation of a QoS-Adaptive System for Reliable Multicasting" . In
Proceedings of the 23rd Symposium on Reliable Distributed Systems (SRDS04),
Florianópolis, Brazil, October 2004.

G. Ferrari, S. Shrivastava, P. Ezhilchelvan:

„An Approach to Adaptive Performance Tuning of Application Servers“. In Proc. 1st IEEE
International Workshop on Quality of Service in Application Servers QoSAS 2004), in
conjunction with 23rd Symposium on Reliable Distributed Systems (SRDS 2004),Santa
Catarina Island, Brazil, 17 October 2004.

Year 2005

Davide Rossi, Elisa Turrini:

Analyzing Performance Data Exchange in Content Delivery Networks, Proc. International
Conference on

Networking (ICN '05), Reunion Island, April 17-21, 2005 .

N. Mezzetti:

Design and Evaluation of a Trust-Aware Naming Service, To appear in Computer Systems
Science and Engineering Journal, 2005.

To appear:

Wolfgang Emmerich, James Skene:

Engineering Runtime Requirements-Monitoring Systems using MDA Technologies,
Symposium on Trustworthy Global Computing (part of ETAPS in Edinburgh, April 2005), to
be published in LNCS by Springer Verlag

Carlos Molina-Jimenez, Jim Pruyne and Aad van Moorsel:

 TAPAS D20

43

Software Architectures for Service Level Agreements and Contracts, To appear in
"Architecting Dependable Systems III", to be published in the LNCS series by Springer in
2005, Editors: Rogerio de Lemos, Cristina Gacek and Sascha Romanovsky

Articles

EU-Forschungsprojekt fördert ASP-Markt (EU research project encourages ASP market)

 Industriemanagement (Industrial management), pp 77, GITO mbH Verlag,1/2003, Berlin,
Germany

 Marktbelebung durch mehr Sicherheit und Qualität (Market upturn by more security and
quality)

Versicherungswirtschaft (Insurance economy) pp 67, Verlag Versicherungswirtschaft
GmbH, 1/2003, Karlsruhe, Germany

Die zweite ASP-Welle ist auf dem Weg (The second wave of ASP is on it’s way)
Computerwoche, pp 34-35, IDG Business Verlag GmbH, 26/2003, München, Germany

TAPAS macht Appetit auf ASP (TAPAS whets one’s appetite for ASP) eCommerce
Magazin 06-07 /2003, IWT Magazin Verlags-GmbH, Vaterstetten, Germany.

6.4. Exploitation

In today’s ASP market ASP companies typically will try to cover as much of the value chain
as they can, thus extending their business to a maximum profit. On the other hand it is
currently still difficult for small and medium companies, such as Adesso to act as an
application owner, because they cannot really prove that they deliver the promised service
quality, while companies like IBM can easily act as full service providers. TAPAS has
produced the notions of electronic service SLAs and hosting SLAs. With the circulation of
TAPAS technology and concepts it will be easier for entrepreneurs to start companies
dedicated to services such as an application owner, who does not actually host the
application but relies on an ASP. In fact, during the preparation for the auction application it
turned out that DaimlerChrysler has given the mandate to run a procurement auction
platform to a mid-size company. This company in turn relies on an ASP/ISP company to
actually run the systems. Besides the QoS guarantee and monitoring provided by TAPAS it
can be observed, that monitoring QoS is still an issue, because in today’s ASP business the
ASP will monitor the SLA fulfilment. Only in rare cases ASP clients will monitor the
fulfilment themselves. However, even with TAPAS technology somebody will have to
evaluate the monitoring results. Considering other industries it seems a fair assumption that
it makes sense for ASP clients to outsource monitoring issues to a third party.

Though TAPAS results are already available it is quite difficult to reason about future
business types. Asides from SLA-related services in consultancy, software development and
hosting, the availability of formal SLAs can foster a completely different type of business.
When building web portals most companies are eager to integrate foreign services,
depending on the portals target group. While Internet portals will typically integrate

TAPAS D20

44

information and shopping services such as weather data, stock exchange rates or dedicated
offerings for members, portals for employees tend to integrate internal and external services
such as time sheets, travel booking etc. Focussing on external services it will be easier for
start up companies to offer data services, because they can prove their SLA fulfilment and
thus gain reliability. However, as markets and economies are changing rapidly reliable
predictions will be rather difficult to construct.

Though TAPAS does not address all aspects of the ASP scenario, it is obvious that open and
clear interfaces together with proven QoS will enable outsourcing of currently integrated
services. During the last years it could be observed in the market that for instance Storage
Area Networks (SAN) became quite popular, which resulted in companies offering even
storage via Internet TCP/IP connections. In contrast to this outsourcing trend costs for disk
space and memory have fallen to a level, where it does not pay to outsource the storage any
more. It seems that human work is the more expensive factor, so that currently manual
process steps such as software development and support are outsourced to foreign countries.
However, based on the clear separation of concerns in TAPAS it is fair to say that business
partners can find suitable division of work, thus allowing to outsource parts into new
business types.

9. Conclusions

The main objective of the TAPAS project was to develop novel methods, tools, algorithms
and protocols that support the construction and provisioning of Internet application services.
The project planned to achieve this objective by developing QoS enabled middleware
services capable of meeting Service Level Agreements (SLAs) between application services.

The project has achieved the main objective. We identified the following three key
requirements for application service provisioning.

1. Enhancing the application hosting middleware platform to be QoS aware. This way,
hosting platform will be better equipped to meet the requirements of the hosting applications.
In the absence of such a feature, the only alternative available to an ASP is over provisioning,
which is not particularly desirable.

2. Ability to ensure that all inter-organisation interactions are strictly according to the terms
and conditions contracts in force. In the worst case, violations of agreed interactions are
detected and notified to all interested parties; for this, an audit trail of all interactions will
need to be maintained.

3. Ability to demonstrate that hosted applications are meeting the various QoS requirements
of SLAs.

These three requirements underpin the design of the TAPAS architecture. Figure 2 shows its
main features. If we ignore the three shaded/patterned entities (these are TAPAS specific
components), then we have a fairly ‘standard’ application hosting environment: an
application server constructed using component middleware (e.g., CORBA, J2EE). It is the
inclusion of the shaded/patterned entities that makes all the difference.

 TAPAS D20

45

The QoS management, monitoring and adaptation layer is intended to make the underlying
application server QoS enabled (requirement 1). It is responsible for reserving the underlying
resources necessary to meet the QoS requirements of applications hosted by that application
server, and monitoring the reserved resources, and possibly adapting resource usage (e.g.,
reserving some more) in case the QoS delivered by these resources deviates from that
required by the applications.

All cross-organisational interactions performed by applications are policed by the Inter-
Organisation Interaction regulation subsystem (requirement 2). Techniques were developed
enable relevant aspects of terms and condition contracts can be converted into electronic
contracts (x-contracts) and represented using state machines and role based access control
(RBAC) mechanisms for run time monitoring and policing. Techniques were developed to
enhanced middleware to incorporate non-repudiable service interactions providing audit trails
of service interactions.

It is necessary to be able to demonstrate that a hosted application actually meets the QoS
requirements (e.g., availability, performance) stated in the hosting contract SLAs
(requirement 3). For this reason, we developed an application level QoS monitoring service,
which must also measure various application level QoS parameters, calculate QoS levels and
report any violations. In TAPAS, QoS requirements in SLAs are specified using the SLAng
language.

An important feature of TAPAS architecture is that the three subsystems can be deployed
independent of each other. For example, an ASP might decide to use a ‘standard’ application
server, without the need for QoS management features, because in a given scenario, over
provisioning might be acceptable. The ASP still might need one or both of inter-organisation
interaction regulation and QoS monitoring and violation detection subsystems. Another
important feature of the TAPAS architecture is that the inter-organisation interaction
regulation subsystem, as well as the QoS monitoring and violation detection subsystem
could be provided by the ASP or one or more trusted third parties, thereby providing extreme
flexibility in deployment.

In the ASP scenario there are quite a few business stakeholders for which QoS related
technology is beneficial. First of all there are ASP clients, who are currently not or only quite
rarely in the position to monitor the fulfilment of SLAs. It is quite obvious that the
availability to monitor such services is beneficial to them instantly for existing ASP
situations. For a future ASP client it is even more beneficial because the client is not only in
the position to ask for an SLA but as well for monitoring access. For the duration of an ASP
contract, clients will be even be able to identify differences and subsequently claim financial
penalties. In order to achieve this goal, the ASP must use a TAPAS platform, providing data
to externals, be it the client or a third party. The ASP is now able to find out the resource
requirements before he has to enter a costly general SLA, i.e. the prediction preciseness is
much better than today. Typically, ASPs will need to run load testing to configure the
parameters appropriately, resulting not only in more precise SLAs but as well in a better
resource usage in terms of used machines in a cluster node. The benefit of the resource
usage especially lies in the likeliness of the predicted load. If the average expected load
results in usage of two machines (or, nodes) in a cluster while the more unlikely higher loads

TAPAS D20

46

will require four machines in the cluster, the resource usage can be optimised. However, the
main benefit can be achieved by providing a unique infrastructure that will host multiple
applications of perhaps many clients.

 TAPAS D20

47

References

[1] TAPAS Deliverable report D5, “TAPAS Architecture: Concepts and Protocols”, March
2003.

[2] TAPAS Deliverable report D15, “TAPAS QoS-aware Platform: technology and
demonstration”, September 2004.

[3] TAPAS Deliverable report D11, “QoS-aware Application Server: Design,
Implementation, and Experimental Evaluation”, March 2005.

[4] TAPAS Deliverable report D9, “Component middleware for Trusted Coordination”,
March 2004.

[5] TAPAS Deliverable report D10, “QoS Monitoring of Service Level Agreements”, May
2004.

[6] TAPAS Deliverable report D2, “Specification Language for Service Level Agreements”,
March 2003.

[7] TAPAS Deliverable report D6, “TAPAS Architecture”, March 2005.

[8] TAPAS Deliverable report D1, “Application Hosting and Networking Requirements”,
September 2002.

[9] Gerard J. Holzmann: Design and Validation of Computer Protocols. Prentice Hall,
(1991).

[10] Gerard J. Holzmann: The SPIN model checker, Primer and reference manual. Addison-
Wesley, (2004).

[11] Ellis Solaiman, Carlos Molina-Jimenez, Santosh Shrivastava: Model Checking
Correctness Properties of Electronic Contracts. In Proc. of the Int. Conference on Service
Oriented Computing (ICSOC03).Trento, Italy, Dec. 2003. Lecture Notes in Computer
Science Vol. 2910, Springer (2003).

[12] Rosettanet implementation framework: core specification, V2, Jan 2000.
http://rosettanet.org

[13] TAPAS Deliverable report D8, “QoS adaptive Group Communication”, May 2004.

[14] The JBoss project, http://www.jboss.org

[15] JGroups – A Toolkit for Reliable Multicast Communication, http://www.jgroups.org

[6] http://www.objectweb.org

[17] BEA, ``BEA WebLogic Server 8.1 Overview: The Foundation for Enterprise
Application Infrastructure'', White Paper, August 2003.

[18] http://www-306.ibm.com/software/webserver/appserv

[19] TAPAS Deliverable report D14, “Third Year Evaluation and Assessment Report”,
March 2004.

TAPAS D20

48

Appendix

TAPAS Industrial Advisory Board

The project will form an Industrial Advisory Board, whose membership will represent a
cross-section of technology providers, end-users and middleware standards bodies. Regular
meetings with the Board will help us in revising, where necessary, the objectives of the
project. The membership of the Board includes:

Paul McKee (BT exact Technologies): is a team leader in the Distributed Computing and
Information Systems research group at BT exact Technologies. He currently manages
projects including collaboration with a number of Universities. His research is focused on
large-scale distributed systems, particularly policy-based management and high performance
event-based architectures for capturing and processing management information. Paul joined
BT in 1989 and initially worked on high-resolution optical devices before moving to a
distributed systems group where he worked on autonomous replication and low overhead
consistency protocols. He has published over 40 papers and is a member of the IEEE
Computer Society.

Andrew Watson (Technical Director of the OMG): graduated from the University of
Cambridge in Computer Science and Engineering and spent two years at Hewlett-Packard's
Bristol Research Centre, working on one of the first X.400 implementation. In 1989 Andrew
joined the ANSA core team, working initially on the of the ANSA Computational Model and
DPL, a language realising that model. Andrew then joined the Object Management Group
(OMG) and chaired the ORB2 Task Force. Andrew is now Technical Director of the OMG
and is responsible for the OMG's technology adoption process. Andrew also chairs the
OMG's Architecture Board, a group of distinguished technical contributors from OMG
member organizations. It was during Andrew's technical directorship that the OMG adopted
the Unified Modelling Language (UML), the Common Object Request Broker Architecture
(CORBA) and the CORBA Component Model.

Prof. Dr. Rudolf K. Keller (Zühlke Engineering AG): is the leader of the business unit Java
Computing at Zühlke Engineering AG in Schlieren (Zürich), Switzerland. He is was an
Associate Professor in the Software Engineering Group (GÉLO) at the Department of
Computer Science and Operations Research at University of Montreal (UdeM). Before
joining the faculty at UdeM in 1994, he was for several years a researcher at Montreal's
CRIM research institute. Rudolf has taught at the School of Computer Science at McGill
University and at University of California at Irvine, where he was a postdoctoral fellow from
1989 to 1991. He received a M.Sc. degree in mathematics from the Swiss Federal Institute of
Technology (ETH) at Zürich in 1983, and a Ph.D. degree in computer science from
University of Zürich in 1989. Rudolf's current interests are in object-oriented analysis and
design, reverse engineering, design components and patterns, software quality, user interface
engineering, business process modelling, and technologies for electronic marketplaces.

 TAPAS D20

49

Dr. Marko Boger (CEO of Gentleware AG): is founder and CEO of Gentleware AG, a
German company building UML-CASE-tools. He holds a PhD from the University of
Hamburg where he worked as researcher on topics like UML, distributed systems
development and e-Commerce for several years. He is author of the book 'Java in Distributed
Systems', originally published in German (dpunkt-verlag) and later translated to English and
published by Wiley. Marko was a key contributor to Argo/UML developer, which has now
been developed by Gentleware into the Poseidon Toolsuite that is becoming part of Sun's
Forte for Java development environment. Marko is a regular speaker at conferences, member
of the program committee of the UML conference series and actively engaged in the
standardisation of UML at the OMG.

Dr. Mark Little (HP Arjuna Labs): is a Distinguished Engineer/Architect, within HP Arjuna
Labs., Newcastle upon Tyne, England, where he leads the Transactions team. He joined HP
via a series of company acquisitions: Bluestone Software, Arjuna Solutions, which he was
one of the founders. Before joining Arjuna Solutions he was for over 10 years a member of
the Arjuna Distributed Computing team within the University of Newcastle upon Tyne
(where he continues to have a Visiting Fellowship). His research within the Arjuna team
included replication and transactions support, which include the construction of an OTS/JTS
compliant transaction processing system.

Dr. Stuart Wheater (HP Arjuna Labs): is a Distinguished Engineer/Architect, within HP
Arjuna Labs., Newcastle upon Tyne, England. He joined HP via a series of company
acquisitions: Bluestone Software, Arjuna Solutions, which he was one of the founders.
Before joining Arjuna Solutions he was for over 10 years a member of the Arjuna Distributed
Computing team within the University of Newcastle upon Tyne (where he continues to have
a Visiting Fellowship). His research within the Arjuna team included transactions and long-
lived process support, which include the construction of a CORBA based transactional
workflow system.

Dr. Tobias C. Kiefer (Head of eTransaction Banking, Commerz NetBusiness AG/
Commerzbank Group): Since April 2001 Head of eTransaction Banking at Commerz
NetBusiness AG. Responsible for business development concerning epayments, mpayments,
electronic bill presentment and payment, internet trust services and innovative transaction
technologies and methods. Author of numerous publications and conference presentations
concering the topic of services based on PKI, eBusiness strategies, banking strategies as well
as speaker and moderator of specialized conferences with regard to strategies in e-commerce
and etransaction banking. Main expertise in strategies, innovation management and business
development.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

