VR EYRY

TAPAS
IST-2001-34069
Trusted and QoS-Aware Provision of Application Services

TAPAS
D4: SLA Composition and Validation Tool

Report version: 1

Report Delivery Date: September 2004

Classification: Public

Contract Start Date: 1 April 2002 Duration: 36m

Project Co-ordinator: Newcastle University

Partners: Adesso, Dortmund - Germany; University College London - UK;
University of Bologna - Italy; University of Cambridge - Uk

Project funded by the European Community under
the Information Society Technology Programme
(1998-2002)

D4:. SLA Composition and Validation Tool

James Skene, Licia Capra, Wolfgang Emmerich, Mirco Musolesi
Dept. of Computer Science, UCL

Simon Parkin
School of Computing Science, University of Newcastle upon Tyne

Gorgia Lodi
Dept. of Computer Science, University of Bologna

Werner Beckmann
Addesso

September 16, 2004

Contents

1 Introduction 2

2 Overview of the SLANng language 4

3 Generating an SLA checker 7

4 Design of the JMI generator 9

5 The SLA checker 11

6 Evaluation 14
6.1 Deploymentofthe SLAchecker 14
6.2 Results. 15

7 Related work 16

8 Conclusion 18

1 Introduction

In deliverable D2 [15] we introduced SLANng, a language for Service Level Agree-
ments (SLAs). Deliverable D3 and [22] discussed a novel approach that we adopted

to eliminate the possibility of parties disagreeing over the meaning of an SLA, by pro-
viding the language with an unambiguous semantic definition. We chose to apply a
meta-modelling technique to the definition of the language, in which both the syntax
and semantic domain of the language are explicitly modelled using a Meta-Object Fa-
cility (MOF) model [16] (similar to a UML class diagram [19]). The syntactic part

of the model defines the format of SLAng SLAs. The semantic part of the model can
be interpreted as describing the objects and events in the real world to which the syn-
tactic elements refer, in this case service infrastructure and the events associated with
service provision. SLAs may be associated with services, and Object Constraint Lan-
guage (OCL) constraints embedded in the model assert that service behaviours should
be consistent with the values specified in associated SLAs, hence defining the violation
semantics for SLAng SLAs.

MOF and OCL are standards maintained by the Object Management Group (OMG),
and are technical components of the emerging development strategy that it promotes
called the Model Driven Architecture (MDA) [18]. In this approach, systems are devel-
oped by first modelling them in a technologically neutral manner, then refining models
by adding platform-specific information, and finally deploying systems by automat-
ically generating platform artefacts such as source code and deployment descriptors
from models.

The fact that the SLAng language is described using MDA modelling language
technologies presents the opportunity to apply the MDA approach of generating source
code from models to generate the implementation of an SLA checker. The meta-model
provides a specification of the data structures needed to store the pertinent SLA and
service usage data, and the OCL constraints in the meta-model define what it means
for this data to be considered free from violations. In this paper we describe how
we have used the Java Metadata Interface (JMI) standard to generate classes to store
the data, and applied a free implementation of an OCL interpreter to interpret the OCL
constraints from the SLAng meta-model over these data, and therefore detect violations
if any exist.

This report contains material from [20] and [21]. The main contributions of this
work are: firstly, to observe that the explicit meta-modelling approach used to define
SLANg also effectively delivers the specification of a component for storing and inter-
preting data relevant to SLAs, eliminating the cost of reimplementing the checker when
the language changes; secondly, to observe that by generating a component for inter-
preting a language automatically from the language specification we expect to reduce
the chance of semantic errors being introduced during the implementation process; and
thirdly to describe and evaluate our experience and the practical issues arising from
taking this approach to producing the checker. The report also serves as technical
background to the SLAng checker component, employed to assess conformance with
SLAs in TAPAS technical demonstrations.

In outline, the report reads as follows: In Section 2 we briefly review the features
of the SLANg language and its specification. In Section 3 we describe in more detail
the motivation for generating a checker component automatically, and the approach
taken to achieve this. In Section 4 we discuss the design and implementation of a tool
for generating the checker. In Section 5 we describe the architecture of the resulting
checker. In Section 6 we describe the deployment of the checker to monitor an EJB

service, and present our evaluation. In Section 7 we discuss related work. Finally, in
Section 8 we make some concluding remarks, and discuss future work.

2 Overview of the SLAng language

In this section we briefly review the current state of the SLAng language.

The SLANng language syntax and semantics are defined by a MOF (version 1.1)
model [16]. The model provides a formal definition of the structure of the syntax of
the language, and of the semantic domain in which SLAs apply. These are modelled
in terms of classes of objects with attributes and associations. Constraints in the model
restrict the sets of objects described so that SLAs are only ever associated with services
that are consistent with their terms and which meet their conditions. In this way the se-
mantics of the language are formally defined. This approach was inspired by the work
of the Precise UML group (pUML), who used the approach to define the semantics for
their UML 2 submissions [11].

When SLANg was initially presented in [15] it could express SLAs for a range of
different types of service including application service provision, component hosting,
storage service provision and Internet service provision. However, since adopting the
meta-modelling approach described in [22], we have only completed the meta-model
for Electronic Service SLAs, which cover the provision of an application service over
a network. The models and discussions in this paper therefore pertain to ES SLAs
only. In future we intend to expand the formal definition for the other types of services
listed above. The development of the SLA checker component was intended to assist
with the development of the language by providing a platform for experimenting with
different types of obligations, and for verifying that the meta-model constraints are
both syntactically correct and appropriate.

MOF models are very similar to UML class models [19]. A view of the meta-model
showing the syntax of the ES SLA is shown in Figure 1. The SLA is divided into a
section for defining terms, and another for conditions. The conditions section is further
subdivided between conditions on the behaviour of the service provider, and conditions
on the behaviour of the client.

The use of a MOF meta-model to define the syntax of SLAng confers the advan-
tages of the XML Metadata Interchange (XMI) [17] standard, a standard for serialising
MOF-defined metadata. The XMI mapping of the SLANng syntactic model constitutes
the concrete syntax of the language.

A fragment of a SLANng contract is shown below. It shov&averPerformanceClause
that places constraints on the login operation of the EJB application described in Sec-
tion 6, and forms part of the SLA used in the evaluation of the component. The
attribute values of the clause, suchrasximumLatency and reliability are de-
fined using references to typed objects defined elsewhere in the SLA, identified using
their mofid . At the end of the fragment, theuration object associated with the
maximumLatency attribute can be seen. TlgerverPerformanceClause is also
associated with a@perationDefinition , and aSchedule . These attributes and
associations of th&erverPerformanceClause can be seen to correspond to those
expressed in the model in Figure 1.

8SNe|JBIUBLLIOKBHIUBI +

asne|

SISNE[OIUBIYISSI

*T

fauanbai4: IndyBnoay wnwixew+
Buing: aureu+

9Sne|Ja0uRWIOHBdIUBI)

9SNe|)3URWIOHBAIUBI[+

_ SUORIPUOD +

DIOUBLLIOHDAIBNIBS +

(s10813U00 WOY)

[1°0Juoneing: Jredayo)swi|xew+
[170] aBe3uB0IRg:ANNIqEIRM
[1°0]uoneing: Aouste wnuwixew-+
Buing: awreu+

asne|IpajNPayas

X7 $3SMe|)IBNIAZY 15T

SUOIHPUOJBIIBSIIUONIB[3 +

SUOIPUOD30IIBSIILOAIB]

BSNe|)BIUBLIOHBHIBNIBS +

X1

3SNE[)3IUBLLIOYAFIBNAS
uonesado +
¥T .
: n
wonerdo + Buis: eusiuoaIne+
Butng: uondiosap+
KT

uonjuyaquoneiado

uoniuaquonesado +
Jaqdooyswia)

NINEIES

(s1083U00 WO

SUONIPU0JSI0L Y 1ged

VIS0

VISBAIIBSOIUOAI3 +

suonIpuod +

suonIpuoy

bSalu0n03ye +

—] VISNE0

SWIBLS301Y1588

JQIBI0LSLIB)

Butng: uondiiosap+

UonIuL3QIUaI)BIINIRS|

UOIUYAQIUIIR0INIBS +

JoQs30Lswis)

Butng: uondiiosap+

UOIUY3a0INASOIUOLIRI

UONIULIRQR0IAIBSIILONIB[B +

SULIB | 2QAIBSIIU0IIIFYR +

wias SWIALAIINIBIIUOAIIYT SUOIPUOQOLY TS
Swis) +
(swenuod woy) | swisjopyis
Swia) SJOBIJU0) WO
SWwig) + (soen)

Y18

Model of the syntax of SLANg electronic-service contracts

Figure 1

<SLAng:ServerPerformanceClause
xmi.id="mofid:4328595"
name="Login performance"
maximumLatency="mofid:12499840"
reliability="mofid:19485920"
maxTimeToRepair="mofid:517215">
<SLAng:ServerPerformanceClause.operation>
<SLAng:OperationDefinition
xmi.id="mofid:12947963"
description="Login performance measured
at EJB container boundary"
failureCriteria="Any exception">

</SLANng:OperationDefinition>
</SLAng:ServerPerformanceClause.operation>

<SLANg:ScheduledClause.schedule>
<SLANng:Schedule xmi.id="mofid:7361214"

name="August to September 2004"
startDate="mofid:8609150"
duration="mofid:23958818"
period="mofid:22674777"
endDate="mofid:7286463"/>

</SLANng:ScheduledClause.schedule>

</SLANng:ServerPerformanceClause>

<SLAng:Duration xmi.id="mofid:12499840"
value="100.0"
unit="ms"/>

The semantic model of electronic service provision is shown in Figure 2. Service
usages are events, occurring over a period, with the possibility of failure. They are
associated with an operation, which forms part of an electronic service. They are also
associated with the client that caused the usage. Although the model of service usage
for application services presented here is simple, it is explicit and fairly unambiguous.
It serves as a reference for the definition of terms seen in the syntax of the Electronic
Service SLA. The syntactic and semantic models are co-located in a single model, and
the terms in the syntactic model are associated with elements in the semantic model in
order to define their meaning.

As stated above, the SLAng meta-model also includes OCL constraints that give
meaning to condition statements in the language. The following is the top-level invari-
ant defining the meaning of performance and reliability for Electronic Service SLAs:
context contracts::es::ServerPerformanceClanse
operatior—collect(o : contracts::asp::OperationDefinition

o0.operation
)—forAll(o : services::Operatioh
observedDowntime(oX (timeRemaining(-1) (1 - reliability)))

This expression is explained in detail in [22]it relies on a number of function
definitions, such asbservedDowntime defined in the specification. The total amount

1The expression is slightly modified from [22] as a result of testing and developing the meta-model and
constraints using the generated SLA checker. However, its intent is the same and its structure is quite similar.

of OCL for this constraint runs to about 50 lines.

ServiceClient Period Event

>

+name:String +duration:Duration +date:Date
+serviceClient

ClientUsage .
*serviceUsage * UsageOperation

(from services) (from services) (from services)

ElectronicS ervice ServiceUsage - Operation
f . * +serviceUsage . ’
(from services) Hailed:Boolean +operation (from services)
+name:S tring
+operation

+electronicService OperationToES 1%

Figure 2: Model of electronic service usage

In contrast to other SLA and policy languages, SLAng does not include any in-
trinsic extensibility mechanisms, such as the capacity to define new sources of service
performance data or composite obligations regarding the performance of services. Itis
our belief that languages providing these facilities without insisting on a strong support-
ing semantic definition for them pose a risk to the parties to the SLA, as it is too easy
to define ambiguous contracts, and in fact hard to define unambiguous ones (consider
the 50 line OCL definition of performance and reliability discussed above). Instead we
aim to provide useful and unambiguous contracts as the core definition of SLAng, and
suggest that SLAng can be extended by modifying the meta-model and defining new
constraints relating syntax to service behaviour, if necessary, and then with care. Of
course, modifying the language necessitates the modification of SLA checkers, and this
further motivates the need for a checker to be automatically derived from the language
specification.

In this section we have presented an overview of the SLANng language and its spec-
ification. For a more detailed discussion of the language, including a discussion of
design decisions and objectives, and a comparison to other SLA languages and tech-
nologies, please refer to [22].

3 Generating an SLA checker

The SLAng meta-model and constraints, as used in the language specification, are a
model of ideal service provision in the presence of SLAs. The model describes the
structure of SLAs, and the structure and behaviour of services in the real world. The
constraints assert that we expect the services to behave in a manner consistent with the
SLAs that apply to them.

The meta-model can alternatively be interpreted as a model of data describing the
world, and the set of conditions necessary for those data to be considered free from

violations. If we interpret the meta-model in this way, then we can produce a computer
program capable of holding those data and checking them, to see whether services are
behaving in the way that we want them to, i.e. without violations of SLAs.

The process of implementing the checker program has the potential to introduce
errors, such that the program either misses violations defined by the language specifi-
cation, or reports violations that have not actually occurred. Moreover, every time the
language is altered, during its development, or in response to changing requirements,
checkers would require reimplementation. The cost of implementation and the po-
tential for errors can be substantially reduced by automatically generating the checker
from the specification. The SLAng meta-model is ideally suited to this approach: It is
a MOF model, which may be represented in XMlI, and the constraints are in the textual
format of the OCL. It is therefore entirely machine readable. Moreover, a standard
already exists for transforming MOF models into code, called the Java Metadata Inter-
face (JMI) standard [13]. It defines a set of Java interfaces for manipulating models
based on the structure of their meta-model. Finally, at least one implementation of an
OCL interpreter is freely available.

All that is necessary in order to implement a checker for SLAng SLAs is to generate
the JMI interfaces and an implementation for the SLAng meta-model, and attach an
OCL interpreter that can check constraints by querying these interfaces. This approach
is shown in Figure 3 in which thick arrows represent code generation, and thin arrows
represent data flow.

| Syntax model | Semantic model |

| | N |
| Constraints |
I I
I I
L o =] L
[]
Code
Generator
N N
| ocL Java classes
Java classes i
for SLAs interpreter for events

Figure 3: Generating an SLA checker from the SLAng meta-model

To achieve this goal we found it necessary to implement a JMI generator. As dis-
cussed in the related work section, this was needed because previous generators did
not offer adequate flexibility over the type of code generated. We combined the re-
sulting generated data structures with the OCL2 interpreter implemented at Kent Uni-
versity [10], which features an extension allowing it to evaluate OCL constraints over
plain Java objects using Java reflection. The design of the JMI generator is discussed

in more detail in the next section. The design of the resulting checker is discussed in
detail in Section 5.

4 Design of the JMI generator

The JMI generator is implemented in Java, and follows the design shown in Figure 4.
It is heavily dependent on the Velocity Template Engine (VTE) [9], developed as part
of the Apache project. Similar to Java Server Pages (JSP) [5], or PHP [6], Velocity is
a tool for generating text from predefined templates. These templates are text files that
include fields delimited using special characters. The VTE is configured with these
templates, and also extra data called ‘context’. The templates are parsed by the VTE:
ordinary text is passed straight through; the fields in the templates either control the
order of parsing, for example by specifying optional or repeated sections, or indicate
that data from the context should be inserted. By varying the context, several outputs
can be produced from the same template.

) Velocity
LTI\(;ISLeIIE((jj(')tn templates
itor
for IMI M B
interfaces
— and
JMI generator implemen-
tations
N Create Velocity
SLAng Read Velocity template YN
meta- XMI context engine reader/
model objects writer/
XMI
DTD

Figure 4: Design of the JMI generator

The templates in our implementation are taken from the JMI specification, and
translated into Velocity's template syntax. The JMI specification requires the following
Java types to be produced, each of which is contained in its own file:

e For each class:

— A‘class proxy’ interface, for creating and finding instances of the class.

— An ‘instance’ interface, for editing properties and invoking operations of
instances of the class.

e For each association: An ‘association proxy’ interface for creating and querying
pairs of associated instances.

e For each package: A ‘package proxy’ interface enabling the discovery of class
proxies, association proxies and subpackage proxies.

e For each enumeration:

— An interface type for enumeration values.
— A class containing static exemplars of enumeration values.

o An XMI reader interface.
o An XMI writer interface.

The generator includes a template for each of these elements. Figure 5 shows a frag-
ment of the template for the instance interface that generates accessor methods for at-
tributes. Figure 6 shows the template applied to the context data fBethieeUsage
class shown in Figure 2.

fiffi Aocessor Operations
i FHPLE (Fa.multiValusd)
public static Class get${aNameCaps}_elementTvpe =
f{typel.class;

i “HPAf (§a.ordered)
public java.util.List getd{allameCaps} ()
throws javax.jmi.reflect.JwiException:
i “Hifelse
public java.util.Collection getd{alameCaps} ()
throws javax.jmi.reflect.JwiException:
#* *#Hiend
#= “fifelse

public ftype getd{allzmeCaps} ()
throws javax.]jmi.reflect.JwiException:

#= “Hfpend
Mutator Operations
“H$Aif (' Sa.multiValued && $a.changeable)

public void seti{allaweCaps} (ftype §{a.nsue}l) throws
Javax.jmi.reflect.JmiException;
#= “Hfpend
#% *ifend

Figure 5: Template for attribute methods on JMI instance interface

Except in the case of enumerations, the JMI specification only defines interfaces,
but does not indicate how they are to be implemented. The generator therefore also
includes templates for implementations of each of the above elements. The generator
has a template to produce an XMI DTD following the pattern described in the XMl
standard.

The context for each of these templates is drawn from the particular MOF model
for which a set of IMl interfaces is being generated. In our case this is the SLAng meta-
model. The meta-model is exported from a modelling tool in an XMI format file. The
first stage of the JMI generator reads this file and creates an in-memory representation
of it.

This initial in-memory representation of the API is not a suitable context for the
Velocity templates, as it reflects the structure of the XMl file, rather than the structure
of the templates. Velocity templates can only perform quite simple data manipulation

10

package uk.ac.ucl.cs.slang.wodel.services.es;

public interface ServicelUsage

extends uk.ac.ucl.cs.slang.model.services.Period
ff httributes

public boolean getFailed()
throws javax.jmi.reflect.JwiException;

public void setFailediboolean failed) throws
Javax.jmi.reflect.JwmiException;

// Heferences

public uk.ac.ucl.cs.slang.model.services. ServiceClient
get3erviceClient ()
throws javax.]jmi.reflect.JwiException;

public void set3erviceClient|
uk.ac.ucl.cs.slang.model.services. 3ervicellient
newialue)
throws javax.]jmi.reflect.JwiException;

public uk.ac.ucl.cs.slang.model.services. Operation
getOperation()
throws javax.]jmi.reflect.JwiException;

public void setOperationi
uk.ac.ucl.cs.slang.model.services. Operation
newialue)

throws javax.]jmi.reflect.JwiException;

/4 Operations

Figure 6: JMI interface to service usage data

(they lack recursion, for example, which makes it difficult to navigate data structures
in the context). They must therefore be supplied with their context data in a form that
closely reflects the way it is used in the template. The second stage of the generator
creates a number of different context objects, appropriate to the Java files that must be
generated, using the data from the in-memory representation of the XMl file.

In the third stage of its operation, the VTE is invoked using the generated context
objects and the JMI templates, in order to generate the requisite JMI Java code. This is
placed in the appropriate places in a package directory hierarchy on the file system.

5 The SLA checker

The SLA checker consists of three major components:

11

1. The automatically generated JMI interfaces and implementation for holding SLAs
and event data.

2. The Kent OCL implementation, with SLAng constraints loaded, for checking
whether SLAs have been violated.

3. An API wrapper, that allows checks to be requested, and returns lists of vio-
lations that have been found. This part is hand-written in our implementation,
because it is independent of the structure and semantics of the SLAng language.

The checker may be incorporated in electronic service systems wherever SLAs
need to be monitored. It is used as follows:

1. The checker is instantiated.

2. The static elements from the semantic model are instantiated or loaded from an
XMl file. These elements, with types suchisctronicService , ServiceClient
andOperation represent knowledge that the checker has about the service or
services being monitored. The model is manipulated using the generated JMI
interfaces.

3. One or more SLAs are instantiated or loaded from an XMl file, again using the
JMI interfaces.

4. Associations are established between the service components defined in the SLAs
and those components in the service model created in Step 2. This is the mo-
ment when it is necessary to have a clear understanding of to what the terms in
the agreement refer. The links between the elements are created using the JMI

interfaces.
5. Monitoring data is provided to the component by invoking the various ‘cre-
ate’ methods found on the JMI API (e.gereateServiceUsage() on the

ServiceUsage class proxy interface). These data are associated with the rele-
vant static elements in the service model, created in Step 2.

6. Periodically, the check methods on the violations APl may be invoked. These
return lists of violations, if any exist.

The instruments measuring the performance of the service are not part of the SLA
checker, so must be implemented separately. For a given SLA, a combination of the
descriptions included in its terms section, and the reference model of the service in-
cluded in the language definition (Figure 2) provide the guidance as to what data these
instruments must provide.

To demonstrate the SLA checker and to assist in the development of the SLANng
semantics, we have implemented a browser that allows the editing of SLA and event
data, via a tree-view of the model. This relies on the reflective facilities of IMI, which
allow each element in a model to contain a link to its corresponding meta-element in its
meta-model. The meta-model in this case is the MOF model instance representing the
SLANg meta-model. The representation of the SLAng meta-model is only necessary
when using the user-interface, and would not be required when using the checker as a
component.

The user-interface also allows interactive editing and checking of the constraints
over the SLAng model. The design of the checker is shown in Figure 7. A screenshot of

12

the user interface is shown in Figure 8. The leftmost panel in the user interface contains
the tree representing the SLAng model (SLAs and events). The middle panel lists the
constraints over the model, and the rightmost panel allows the editing of constraints.

N User interface
SLANng) S
meta- MOF MOF Reflective Violations
model XM IMI browser reporting
XMI reader
Checker component
stas/ N[
Service [H SLAng SLAng Kent Violations
models XMI M ocL interface
reader inter-
preter
———— | T
SLANg N
Constraints
Figure 7: Design of the SLA checker
=IOl
Window

Blsiangcnecker 2270000

Tolcln 1=

rodel 9 . Semartics

| [context types:Duration

o — i
types g f WE Gne setofterm 2 yos e Real =
9 [senices i WF One setof con if unit = types: TimeUnitEnum. Mg then val
& es & 5 WF Duration ol
@ M operstion & 5 WF Storagecapac

if unit = types: TimelnitEnum.NE then v
else
if unit = types: TimeUnitEnum 5 then vaj
else
if unit= types: TimeUnitEnum Min the
else
if unit= types: TimeUnitEnum Hrthe

@ B mofid:21353508
4= name = Bid
— senviceUsage
— electronicService
— aperationDefinition
© [ElectranicService
e [Pary
© [ServiceClient
¢ [contracts
¢ lies
@ [ElectronicServicesLaA
¢ E mofid:1 9956638
+ terms
§ - electronicIeniceTerms
© B mofid:23690516

© 5 WF Percentage
© 5 WX Bandwidth
© 5 WX Dats
© 5 WX Frequency
© 5 MXEvents
© 5 M Periods
© 5 M ElectronicBeni e
© 5 M SeniceClient e = 1000 B0~ 60~ 24
© 4 MK Party : endit
© 5 WX Dperation [——
© 5 M SeniceUsage P
& 5 WX SLA endif
© 5 MXTerms

endif
© 5 WX Conditions
© 5 M Schedule

“| | ef. eqls : ypes:Duration) : Boolean =

-+ seniceClientDefinition © 4 M ElectronicServi inMs0 = s.inMsg
= providerDefinition © 4 MX ElectronicServi
= clienDefinition ©- 4 MX ElectronicServig | £
@ =+ electronicSenicaDetinit] o 2 WX Electronicenvifdd || beesDate
@ B mofid:22558096 & i W ServiceClientDN | |t imen - Real=
a= gescription = At © i WX OperationDefin| |2 "5 o 1212000, inMso
— electronicSenice © % WF All aperation d
& — terms © 4 MK StorageCapaci
~+ operationDefinition © iv; 2

Figure 8: Screenshot of the SLA checker user interface

13

6 Evaluation

6.1 Deployment of the SLA checker

We have tested the SLA checker by deploying it to monitor the performance of an EJB
application. The application is an auction management system developed by an indus-
trial collaborator. SLAs are potentially very useful for auction applications, which typ-
ically involve multiple organisations, with mission-critical performance requirements.
For the purposes of this evaluation we monitoreditiggn operation using an SLA,

a fragment of which is used as an example in Section 2. The application is deployed in
the popular application server JBoss, which implements the Java 2 Enterprise Edition
(J2EE) specification [4], using Apache Tomcat to serve the web front-end [2].

The architecture of JBoss is based on the Java Management eXtensions library
(IMX). In this component-based architecture, all functionality is deployed as ‘managed
beans’ (MBeans), Java components that expose meta-data, configurable properties and
lifecycle management methods. The JBoss distribution and default configuration in-
cludes MBeans implementing EJB containers, JNDI naming services, transactions, and
many other services. We have deployed the SLA checker as an MBean, meaning that it
has one instance per instance of the JBoss server. It is made available to other MBeans
and to deployed EJBs via the JNDI naming repository.

To provide external access to the SLA checker, we implemented a small J2EE ap-
plication called ‘The SLAng Control Panel'. This consists of a single JSP page provid-
ing an interface to a stateless session bean. This bean in turn delegates operations to
the SLANg checker. The main operation provided by the checker over this interface is
checkAll() , which causes the component to evaluate the SLAng constraints over its
internal model of SLAs and service data, and return a list of violations, if any exist.

Tomcat JBoss
B Ir Client-side | Ir Server-side |
proxies interceptors :
Apache Auction I : I : 2:3:22
HTTP Application |, 1 1 - A g
JMeter 5 }
5P 7 : 7 r_32 | tion EJB
1 1
1 : 1 !
1 1 !
1 ! 1 !
[ar ! SLANg
[ar ! Checker
[ar + Compo-
[ar ! nent
1 1
! 1 ! 1
1 1
B 1 ! 1 !
Web SLANg | | | 1
browser HTTP Control . | . 1
Panel | T, T
JSP | 1
1 1
e Y -

Figure 9: The SLA checker component deployed to monitor an EJB application

14

Service performance information is passed to the SLAng service by a server side
interceptor configured as an option of the JBoss container configuration. JBoss remot-
ing operates using a stack of interceptors on both the client and server side. These
allow different types of functionality to be added to the communication channel inde-
pendently, such as transaction management, security, and the communication proto-
col itself, which is managed by the outermost interceptor on client and server sides.
For the purposes of evaluating the SLAng component, we added an interceptor on the
server side to measure time spent processing EJB requests. The interceptor accesses
the SLANg service using JNDI and invokes thieateServiceUsage() , method on
its JMI interface to record the measured time.

Apache JMeter was used to generate a variety of loads on the service [3].

6.2 Results

In this section we evaluate the SLA checker on three points: The ease of implementa-
tion of the checker; the ease of deployment of the checker in its intended context (in
this case to monitor the auction application); and the performance of the checker.

Implementation: Effort in implementing the checker falls into three categories: im-
plementing the JMI generator; implementing the SLAng language specification that is
the input to the generator; and implementing the remaining code for the component,
which mainly involves the integration of the OCL evaluator component and the provi-
sion of an API for requesting checks and reporting violations. Of these three categories,
the first two could be speciously discounted on the grounds that they are separate efforts
from the implementation of the actual component. If this were the case, then imple-
menting the component would have taken around 1 man-week of labour. In fact, the
total amount of labour has been closer to 1 man-year, and JMI generator, language and
component have co-evolved to some extent. Indeed, as discussed below, the JMI gen-
erator, or at least it's templates will have to continue to adapt in the face of performance
requirements that are somewhat related to the domain of the application, i.e. checking
SLANg contracts. The SLA checker consists of approximately 115,000 lines of code
(including blank lines and comments) outside of standard libraries of which 77,000
were generated, 36,500 form the implementation of the OCL evaluator and 1,500 were
hand written.

Deployment: The checker was straightforward to deploy into the JBoss application
server. This is mainly because JBoss’s architecture is expressly designed to support the
deployment of new services and components. However, the JMI interfaces also con-
tribute by providing a clear API through which to deliver service performance data, and
the XMl reader interface and implementation makes loading SLAs and service models
into the component simple. Implementing the SLANng control panel application and
integrating the component into JBoss took 2 weeks for a programmer not previously
intimate with the workings of JBoss.

15

Performance: One of the main claims of this paper is that by automatically generat-
ing the SLA checker from the language specification, errors in interpreting SLAsS can
be avoided. Our testing of the component has revealed many errors in the definition of
the SLANg language, resulting from the fact that the original specification was devel-
oped without the assistance of an OCL interpreter. We also discovered several bugs in
the OCL interpreter, although these caused it to conspicuously fail, rather than to return
incorrect results. We have not yet detected any errors of the type mentioned above, and
although we have yet to conclude a systematic testing of the component, we believe
that this is encouraging.

However, the major problem with the SLA checker is its inability to scale. This is
manifest in two ways: Firstly, and most seriously, the time taken to evaluate the OCL
constraints is highly correlated to the size of the model, and is far too long for models
containing realistic amounts of service data. For a data set of 1000 service usages, the
client throughput constraint compares every pair of usages to determine if they occur
too closely together. If none do, this results in a million comparisons, and takes 20
minutes on a PC with 1.7GHz Intel Pentium 4 processor. The evaluation is slow due
to a combination of factors: The OCL interpreter performs almost no optimisations,
the interpretation of the OCL is innately expensive, and the data model over which the
expressions are evaluated offers no shortcuts, such as indices.

The second issue is related. In our current implementation of the JMI interfaces
all data is represented as Java objects stored in main memory. Since we have imple-
mented no policy for removing or persisting old data, this leads inevitably to memory
exhaustion as the application continues to be used. Moreover, the amount of service
usage data that can be checked is restricted by the amount of main memory available to
the virtual machine in which the component is deployed. This seems an unacceptable
bound on what is in essence a data processing application.

To correct these issues without discarding the approach altogether requires some
reengineering. The data model needs to be backed by a database. This could be either
object oriented, or the translation to a more conventional model could be managed by
the generated Java code for a particular model. Clearly not all data can be assumed
to be in memory at the same time, and this may need to be reflected in the interface
to the model data. The evaluation speed of the OCL constraints could be improved by
translating it to Java, or possibly SQL (with some reduction in expressive power), rather
than interpreting it. We gained some improvement in evaluation time by adding results
caching to the OCL interpreter. Further optimisation of evaluation is required, and
if the constraints are still to be evaluated across a generated interface, the generated
interface may have to provide indices to assist in evaluation, possibly resulting in a
closer coupling between interface standard and OCL evaluator.

Clearly these refinements should be the subject of further research.

7 Related work

In [22] we provide a detailed comparison of SLAng with previous SLA languages,
focusing on the extent to which these languages provide explicit definitions of their
terms and conditions. Our use of an explicit model for this seems to be quite novel, and

16

it is this feature of the language that allows us to generate the checker automatically.
We are not aware of any other attempt to automatically generate a checker for an SLA
language.

Our implementation closely resembles that of the Kent OCL2 interpreter, that we
employ to detect violations. Parts of the implementation of the OCL2 checker were
generated from models of the OCL2 language syntax [10]. Moreover, its checks may be
evaluated over models stored in Java classes generated by the Kent Modelling Frame-
work, a code generator similar to our own discussed below. In this sense the OCL2
interpreter uses automatically generated representations of both its syntax and seman-
tics, and so is quite similar to the SLA checker. However, the OCL2 interpreter does
not maintain any explicit representation of a large part of the language semantics, the
process of interpretation.

Our work also bears some resemblance to efforts to embed requirements monitors
in software for runtime validation of systems. Systems for this purpose consist of a
language for expressing the requirements, coupled with a mapping onto monitoring so-
lutions. Representative examples are: the Java-MaC system [14] which automatically
embeds monitors in Java code using a combination of bytecode rewriting and runtime
libraries; and the KAOS-FLEA [12] system in which requirements specified using the
KAOS methodology are monitored using the FLEA monitoring system coupled with
manually implemented event detectors. These approaches are of comparable expres-
sive power to the use of UML/OCL to describe constraints on a system. JavaMaC
seems to provide extra advantages in terms of automating the instrumentation of the
system, but in fact the requirements must be expressed in terms of the structure of the
Java code being instrumented. The degree of abstraction at which the requirements
are specified tends to determine the degree to which the placement of monitors can be
automated.

Generating program code from UML diagrams is an important step in the Model
Driven Architecture (MDA) methodology. A number of systems to achieve this have
been developed with varying degrees of flexibility in the specification of their output.
However, we found none to be ideal for our purposes, and elected to implement a
generator by hand instead.

Probably the most commercially significant generator is the Eclipse Modelling
Framework (EMF) [7]. The EMF generates specific repositories from UML meta-
models according to a pattern similar to JMI. However, it is not template driven, so we
would have no control over the implementation of the repository. If, as suggested in
the previous section, we need to implement a repository backed by a database, it would
be difficult to achieve using the EMF.

Another alternative is the AndroMDA tool [1], implemented using Velocity tem-
plates. The architecture of this tool is essentially identical to that presented in Sec-
tion 4. Custom templates can be configured by the user, and the tool parses XMl
representations of models and makes available standard context objects. However, as
stated above, Velocity templates do not have powerful control structures. Without the
ability to modify the structure of the context objects to preprocess model information
it is impossible to generate some outputs using AndroMDA. For example, the XMl
DTD requires the use of transitive closure across inheritance relationships in the model,
which cannot be achieved in the template.

17

A powerful alternative is that implemented in the Kent Modelling Framework, ver-
sion 3 [8]. This tool evaluates string-typed OCL expression over models to generate
program text. This approach is potentially very powerful, since OCL is recursive so
can calculate arbitrary functions over the model. However, the OCL expressions are
hard to write, particularly when a ‘generation state’ has to be maintained, containing
things like a list of unique identifiers used. For this reason we preferred to use more
conventional templates.

In future we would like to see a combination of the template-based approach of
AndroMDA, and the more powerful control structures available from OCL. One possi-
bility is the use of PHP, a template language with sophisticated control structures. The
use of PHP to generate code from models could be facilitated by providing a mapping
of the MOF model to PHP classes. This would provide a standard interface to model
data, comparable to the facilities provided by the JMI for Java, effectively allowing
PHP pages to load their own context model before generating code. The resulting PHP
pages would be more reusable than the templates in our implementation, as they would
not depend on external code to represent and preprocess the context data.

8 Conclusion

This paper has described our use of MDA technologies to producing an implementation
of an SLA checker, automatically, from the specification of our SLA language, SLANg.
The approach means that the SLA checker can be regenerated automatically whenever
the language changes, and we have argued that because the process of generating the
checker is standard and independent of the semantics of SLAng, then semantic errors
are less likely to be introduced into the checker. In these two respects, our experience
can be seen as supporting two claims of the MDA approach: reduced costs and in-
creased quality due to a reduction in human error. Moreover, the approach taken seems
particularly appropriate when generating a checker for SLAs in which legal consider-
ations may mean that it is important that the results generated by the component are
particularly free from error with respect to the specification of the language.

The possibility of generating such a checker from the language specification can
also be seen as a justification for our original choice of an explicit meta-modelling ap-
proach to defining SLAng. Designers of other languages may wish to consider adopting
the approach as it offers the possibility to generate all or part of an interpreter for a lan-
guage automatically. Where an explicit representation of the semantic primitives of a
language is practical, an OCL interpreter can be employed to check that these semantic
elements are consistent with statements in the language, which is effectively what the
SLA checker does when checking for violations.

In the process of implementing the checker we evaluated several code generation
tools. These are discussed in the related work section. We believe that a template
based tool is the easiest to use when performing code generation from models, but
that the template language used should be expressive enough to allow preprocessing of
the model data to be expressed in the template. We have proposed PHP as a possible
suitable technology for future use.

Our evaluation of the checker revealed some serious practical considerations. In

18

the case of the SLA checker, our in-memory representation of SLAs and service data
takes the place of, and is in several respects subject to the same requirements as a
database. OCL can be seen as acting as a query language over the data. Although for
restricted numbers of objects the implementation serves its purpose, it seems that to
achieve scalability both the mapping to implementation and the implementation of off-
the-shelf components such as the OCL interpreter must be considerably more sophisti-
cated. This is a consideration beyond SLA checking, as it is reasonable to assume that
large software development efforts will wish to maintain and check consistency within
large repositories of models. Future research should investigate this mapping further to
produce implementation prescriptions to complement interface standards such as the
JMIL.

Our initial implementation of the SLA checker has served as a proof of concept and
as an opportunity to evaluate the technologies employed. It also provides a useful test
platform for refining future versions of the language, since the previously theoretical
constraints and semantic models can now be tested against real and synthesised scenar-
ios of service usage. Our future priorities will be to increase the sophistication of both
the SLANg language and its SLA checker with the aim of producing a broadly applica-
ble, precise language that can be used cheaply and correctly in realistic sitdations.

References

[1] AndroMDA code generation toohttp://www.andromda.org/

[2] Apache Jakarta Tomcat servlet contairdtp://jakarta.apache.org/
tomcat/

[3] Apache JMeterhttp://jakarta.apache.org/jmeter/
[4] Java 2 Enterprise Editiorhttp://java.sun.com/j2ee/index.jsp

[5] Java Server Pages JSP v. 2.0 specificatiofttp://java.sun.com/
products/jsp/

[6] PHP: PHP Hypertext Preprocessbttp://www.php.net/

[7] The Eclipse Modelling Framework (EMF)http://www.eclipse.org/
emf/ .

[8] The Kent Modelling Framework (KMF).http://www.cs.kent.ac.uk/
projects/kmf/documents.html

[9] The Velocity Template Engine v1.4. http://jakarta.apache.org/
velocity/

[10] David Akehurst, Peter Linington, and Octavian Patrascoiu. OCL 2.0: Implement-
ing the Standard. Technical report, Computer Laboratory, University of Kent,
November 2003.

2Thanks to Werner Beckmann and Addesso, Inc. for the auction application. Also thanks to our TAPAS
partners for their input into this work, and to Marc Fleury for his advice concerning JBoss.

19

[11] A. S Evansand S. Kent. Meta-modelling semantics of UML: the pUML approach.
In 2nd International Conference on the Unified Modeling Languagkime 1723
of Lecture Notes in Computer Science (LNG#)ges 140 — 155, Colorado, USA,
1999. Springer-Verlag.

[12] M. S. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard. Reconciling sys-
tem requirements and runtime behavior.Aceedings of the 9th International
Workshop on Software Specification and Desjages 50-59, 1998.

[13] Java Community Process.Java(TM) Metadata Interface (JMI) APl Speci-
fication 1.0 Final ReleaseJune 2002. http://jcp.org/aboutJava/
communityprocess/final/jsr040/

[14] Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Mahesh
Viswanathan. Java-mac: a run-time assurance tool for java programs. In Klaus
Havelund and Grigore Rosu, editoElectronic Notes in Theoretical Computer
Sciencevolume 55. Elsevier Science Publishers, 2001.

[15] D. Davide Lamanna, James Skene, and Wolfgang Emmerich. SLANng: A lan-
guage for service level agreements.9th IEEE Workshop on Future Trends in
Distributed Computing Systensages 100 — 106. IEEE Press, 2003.

[16] The Object Management Group (OMG).The Meta-Object Facility v1,4
formal/2002-04-03 edition, April 2002.

[17] The Object Management Group (OM&ML Metadata Interchange (XMl), v1,.2
formal/02-01-01 edition, January 2002.

[18] The Object Management Group (OMGYIDA Guide Version 1.0,1omg/2003-
06-01 edition, June 2003.

[19] The Object Management Group (OMG)he Unified Modelling Language v1.5
formal/2003-03-01 edition, March 2003.

[20] J. Skene and W. Emmerich. Generating a contract checker for an SLA language.
In Proc. of the EDOC 2004 Workshop on Contract Architectures and Languages,
Monterey, CalifornialEEE Computer Society Press, 2004. To appear.

[21] J. Skene and W. Emmerich. Engineering an SLA checker using mda technologies.
In Proc. of the 26th Int. Conference on Software Engineering, St. Louis, Missouri
2005. Submitted for review.

[22] J. Skene, D. Lamanna, and W. Emmerich. Precise service level agreements. In
Proc. of the 26th Int. Conference on Software Engineering, Edinburghpdges
179-188. IEEE Computer Society Press, May 2004.

20

