

TAPAS

IST-2001-34069
Trusted and QoS-Aware Provision of Application Services

D5 - TAPAS Architecture:

Concepts and Protocols

Report Version: D5

Report Delivery Date: June 2003

Classification: Public Circulation

Contract Start Date: 1 April 2002 Duration: 36m

Project Co-ordinator: Newcastle University

Partners: Adesso, Dortmund – Germany; University College London – UK; University of
Bologna – Italy; University of Cambridge – UK

Project funded by the European Community
under the “Information Society Technology”
Programme (1998-2002)

TAPAS D5

2

TAPAS Architecture: concepts and
protocols

Carlos Molina-Jimenez
John Warne

School of Computing Science
University of Newcastle upon Tyne

(F. Panzieri, University of Bologna and S. K. Shrivastava, University of
Newcastle upon Tyne, Eds.)

Table of Contents

TAPAS Architecture: concepts and protocols ...1

1 Introduction..4

2 Regulating interactions ..6

3 The virtual enterprise model ..8

4 Monitoring and enforcement of contracts..12

5 Trust and trust-related models ...21

6 Trust enforcement ..25

7 Related work ...35

References..37

Appendix..39

1 Carlos Molina-Jimenez, Santosh Shrivastava, Ellis Solaiman and John Warne, “Contract
Representation for Run-time Monitoring and Enforcement”

2 Paul D Ezhilchelvan and Santosh K Shrivastava, “Systematic Development of a Family of
Fair Exchange Protocols”

 3 Nicola Mezzetti, “Towards a Model for Trust Relationships in Virtual Enterprises”

 4 N. Cook, S.K. Shrivastava, and S.M. Wheater, "Dependable Information Sharing between
Organisations Using B2B Objects"

 TAPAS D5

3

TAPAS D5

4

Abstract: The aim of report D5 is to describe the interim TAPAS architecture
for application hosting. To meet this requirement this document discusses the
core concepts and algorithms needed to reason about and to build the TAPAS
architecture. It develops the concept of virtual enterprise and describes how
interactions between members of such an enterprise can be regulated by
means of electronic contracts.

Keywords: Virtual enterprises, virtual objects, contracts, executable
contracts, finite state machine, contract representation, contract monitoring,
contract enforcement, contract implementation, finite state machines, non-
repudiable evidences, events, trust, RBAC, digital evidence

1 Introduction

In the TAPAS project, we are particularly interested in developing solutions to the problem
faced Application Service Providers (ASPs) when called upon to host distributed
applications that make use of a wide variety of Internet services provided by different
organisations. This naturally leads to the ASP acting as an intermediary for interactions for
information sharing that cross organisational boundaries. However, despite the requirement
to share information and services, autonomy and privacy requirements of organisations must
not be compromised. Organisation will therefore require their interactions with other
organisations to be strictly controlled and policed. This creates two major challenges. Firstly,
contractual relationships between multiple organisations for information access and sharing
will need to be governed by service level agreements (SLAs), which will need to be defined
and agreed between the organisations and then enforced and monitored by the ASP.
Secondly, the ASP will have to establish appropriate trust relationships with the
organisations and implement corresponding security policies before organisations will permit
the ASP to act as an intermediary for inter-organisational service invocations. Unfortunately,
ASPs currently lack tools and techniques for offering hosting facilities for such distributed
applications.

 The lack of satisfactory solutions to the issues mentioned in the previous paragraph was one
of the main motivations for the creation of the TAPAS project. It does not take long to realise
that the issues discussed above are not constrained to the interaction between an ASP and a
client. These issues arise in all business collaborations performed through networked
computers. To justify our generalisation of the problem we will discuss here the example of
the creation of a market place mentioned in [1].

Fig. 1 shows a market place that is built with the collaboration of several business partners:
the owner of the market place, a TTP (Trusted Third Party), n vendors and a credit rating
agency. Naturally, the owner of the market place has business interaction with buyers. What
is relevant in the figure is that the owner of the market place relies of an ASP for computer
related services. Likewise, the ASP relies on a ISP (Internet Service Provider) and on a SSP
(Storage Service Provider). Similarly, the credit rating agency depends on the services
provided by n retail banks.

 TAPAS D5

5

Market
place

retail bank1ISP

credit rating
agency

vendor1
buyer

SSP

ASPTTP

retail bankn

independent
enterprise

business
agreement

vendorn

Market
place

retail bank1ISP

credit rating
agency

vendor1
buyer

SSP

ASPTTP

retail bankn

independent
enterprise

business
agreement

vendorn

Fig. 1: A market place hosted by an application service provider.

The common pattern in this figure is the double-arrowed lines that join each pair of
independent enterprises together. These arrows represent business agreements and imply
business interactions. Business interaction is present between each pair of independent
enterprises regardless of the nature of the service (network connection, disk storage,
application service provision, credit rating information, etc.) being delivered.

This suggests that business interaction between the APS and the owner of the market place is
just a special case of a general problem, namely that of building general purpose business
partnerships.

It is conceivable that an enterprise might wish to take part in more than one business
partnership at the same time. For this to be possible, enterprises need to keep their
independence after joining a business partnership. The result of this is that a business
partnership can be regarded logically as a new and independent (from its creators) enterprise.
We are interested in implementing business partnerships electronically and call the new
enterprise that results from the implementation a virtual enterprise.

The concept of virtual enterprise is central to the TAPAS project, however, to have space for
providing more background about our understanding of business processes and business
partnership, we will delay the discussion of virtual enterprises until section 3.

We do not make assumptions about the nature of the business interaction. Nor do we make
assumptions about the goal of business partnership. The concepts we discuss in this work
hold regardless of whether a business partnership is created for offering services to external
users or for offering services only to users belonging to the enterprises that compose the
partnerships. These two possibilities are illustrated in Fig. 2. It is worth mentioning that,
although it is not shown in the picture, the services offered by a business partnership are
normally accessible through an interface. In Fig. 2-a, this interface is visible only to internal
users, whereas, in Fig. 2-b, this interface is made public, so that interested users can see and
use it.

The reason for explicitly mentioning this matter is that we want to emphasise that our
concepts of business partnership and virtual enterprise capture the business interaction of
Fig. 1 where the ISP provides a service to the ASP as well as the business interactions where
the TTP, ASP, credit rating agency and the n vendors provide a service to the buyer.

TAPAS D5

6

external users

E1

E2

Em
business

partnership

a) b)

E1

E2

Em
business

partnership

internal users

join business partnership
E- enterprise

external users

E1

E2

Em
business

partnership

a) b)

E1

E2

Em
business

partnership

internal users

E1

E2

Em
business

partnershipE1

E2

Em
business

partnership

internal users

join business partnershipjoin business partnership
E- enterprise

Fig. 2: Creation of business partnerships for internal and external use.

Regardless of the purpose of the partnership (either a) or b) in Fig. 2) the business interaction
between the business partners is complex because the business partners have to share a great
deal of information and because it involves cross-organisational processes. A cross-
organisational process is a process whose execution involves components that belong to
different independent enterprises and are located within the boundaries of their owners.

In the remaining of this report we will discuss how business interaction between two or more
business partners can be regulated. In Section 2 we explain how business partnerships where
members interact through the Internet can be build. To help reasoning about the business
interaction between the members of business partnership we introduce a model for building
virtual enterprises, Section 3. In Section 4 we discuss how executable contracts can be used
for monitoring and enforcing at run-time the right and obligation of each business partner. In
Sections 5 and 6 we introduce a trust model for guaranteeing that only entities that are legally
entitled to gain access to the resources of the business partnership do. In Section 7 we discuss
some works that are relevant to the TAPAS project. The Appendix contains papers and work
in progress written by members of the TAPAS projects where some of the concepts
mentioned in this report are discussed at large.

2 Regulating interactions

The interaction between m enterprises that participate in a business partnership can be
abstracted as shown in Fig. 3. This figure shows all the main components that a business
partnership involves.

Let us assume that in Fig. 3. enterprises E1 and E2 are trading partner and the builders of the
business partnership shown in the figure. The purpose of the business partnership is the
execution of a set processes, namely, business process1, business process2, … , business
processn. The execution a business processi involves resources belonging to E1 and E2; for
this reason these processes are called cross-organisational. The execution of a process starts
when an operation to create an instance of such process is successfully invoked. Since we are
aiming at general purpose business, we assume that at a given time, n instances of each
business process might be in execution. Naturally, instancei and instancej of business
processk do not necessarily follow the same path when they run; their execution paths are
determined by the events that occur during their execution.

 TAPAS D5

7

As one can see in the figure, each enterprise has a set of people with different skills and
responsibilities (managers, engineers, etc.). These people are called role players and
discussed in-depth in Sections 4.7 and 6.1.2, for now it suffices to say that role players are
the entities that invoke operations on instances of business processes. It is important to
mention that with role players and process instances we have a many to many relation; this
mean that a given role player can invoke operations on more than one process instance and
that a given process instance can receive the invocations of operations from more than one
role player.

The picture shows what happens when engineer1 from enterprise E1 creates an instance (label
(1)) of business processj. Instance1 of business processj runs (2), and at some point it requires
the intervention (the invocation of operations) of several role players, this is shown by labels
(3), (4), (5), (6) and (7).

Fig. 3 also shows how engineern creates instancen of business processj (1’) while instance1
of business processj is till running. Notice that the new instance of business processj is
created by engineern and requires the intervention only of the manager of enterprise E1 and
the accountant of enterprise E2 (labels (2’) and (3’) respectively). Obviously, instancen of
business processj could have been created by engineer1 as we do not restrict the number of
instances a role player can interact with. Likewise, engineern could have created an instance
of business process1 or of any other business process from the set of business processes
available within the business partnership.

To relate the abstract example of Fig. 3 to a practical example we can imagine that
enterprises E1 and E2 work together to design airplanes. Thus, engineer1 creates an instance
of a process to request a copy of the specifications of part number1, whereas engineern is
requesting a copy of the specification of part numbern.

From this discussion, it should be apparent that business partnerships could involve rather
complex interactions between the business partners. There are several crucial questions that
need to be addressed:

• What resources and information is each participating enterprise prepared to share
with its business partners in order to run the business partnership?

• What operations is each participating enterprise allow to execute or expected to
execute on a given instance of a business process?

• When and in what order are operations executed on instances of business processes?

• Who, Alice the manager, Bob the engineer, etc., can legitimately create instances of
business processes and who can legitimately execute operations on these business
process instances?

• Who keeps digital non-repudiable records about the execution of operations on the
process instances so that disputes can be fairly resolved?

TAPAS D5

8

E1 E2
business
processj

business partnership

instance1 of
business
processj

instancen of
business
processj

engineer1

secretary

manager

engineern

manager

engineer

accountant

(2)
(1)

(3)
(4)

(5)
(6)

(7)

(1’)

(2’)

(3’)
(4’)

join business partnership

E- enterprise
invoke operation

business
process1

business
processnE1 E2

business
processj

business partnership

instance1 of
business
processj

instancen of
business
processj

engineer1engineer1

secretarysecretary

managermanager

engineernengineern

managermanager

engineerengineer

accountantaccountant

(2)
(1)

(3)
(4)

(5)
(6)

(7)

(1’)

(2’)

(3’)
(4’)

join business partnership

E- enterprise
invoke operation
join business partnership

E- enterprise
invoke operation

business
process1

business
processn

Fig. 3: General view of business interaction.

3 The virtual enterprise model

We believe that the complexity of the business interaction expected to take place can be
modelled by means of the virtual enterprise model.

3.1. Definition of a virtual enterprise

A Virtual Enterprise (VE) is an enterprise composed out of n independently existing and
possibly mutually suspicious enterprises (E1, E2,…,En) that wish to establish a close business
relationship for an agreed upon period without loosing their independence.

In this definition, the sentence close business relationship means that the enterprises engaged
in a virtual enterprise expect to access each other services frequently and several times as
opposite to one off trading. This means that during the period of the business relationship a
significant amount of information is shared between the participating enterprises. The
length of the business period is specified in a legal, business contract and is normally months
or years. Needless to say, it is assumed that the participating enterprises are liked together by
a communication network like the Internet.

Regardless of the number of enterprises that team together to build a virtual enterprise, a
virtual enterprise looks, to its users, like a single enterprise, that is, its users do not see the

 TAPAS D5

9

complexity of the interaction between the composing enterprises because the virtual
enterprise conceals it.

3.2 Private and shared objects

In our model, an object is any resource or service that can be named. Examples of objects are
documents, files, databases, computers, disks, printers, network connections, etc. It is
assumed that before joining a virtual enterprise, each participating enterprise owns m objects.

The need to share services and information without compromising each other’s
independence, urges each participating enterprise to organise its objects as shown in Fig. 4.

Before joining a virtual enterprise a participating enterprise is expected to separate its objects
into two sets, namely, into a set of private objects and a set of shared objects.

In each participating enterprise the set of private objects contains all the objects that the
enterprise wishes to conceal from its partners. Conversely, objects that the enterprise wishes
to expose to its partners are grouped into the set of shared objects.

How the separation of the two sets is performed internally is a matter and responsibility of
each enterprise.

Em

E1

O1

E2

On

O1

On

O1

On

O1

On

O1 On

O1 On

P
P

P

S
S

S

biz interaction

O-object
P-private
S-shared
E-enterprise

Em

E1

O1

E2

On

O1

On

O1

On

O1

On

O1 On

O1 On

P
P

P

S
S

S

biz interaction

O-object
P-private
S-shared
E-enterprise

Fig. 4: Private and shared objects.

In Fig. 4, a dotted line is used to group together all the sets of shared objects. Later on we
will discuss how the objects within the boundaries of the dotted line can used to build a
virtual enterprise.

3.3. Realisation of a virtual enterprise

A virtual enterprise is called virtual because its main components are virtual objects. These
virtual objects are provided by the enterprises that join the virtual enterprise and are realised
as pointers to their shared objects. The realisation of a virtual enterprise composed out of two
enterprises is shown in Fig. 5.

TAPAS D5

10

E1 E2

O1.E1

On.E1

O1

Om

private
objects

shared
objects

shared
objects

O1.E2

On.E2

O1

Om

private
objects

O1.E1 On.E1 O1.E2 On.E2

virtual objects: pointers to actual objects

VE

Oi.Ei – objecti belonging to enterprisei

E1 E2

O1.E1

On.E1

O1.E1

On.E1

O1

Om

O1

Om

private
objects

shared
objects

shared
objects

O1.E2

On.E2

O1.E2

On.E2

O1

Om

O1

Om

private
objects

O1.E1 On.E1 O1.E2 On.E2

virtual objects: pointers to actual objects

VE

Oi.Ei – objecti belonging to enterprisei

Fig. 5: Virtual objects of a virtual enterprise.

For simplicity, the virtual enterprise shown in Fig. 5 is composed out of two enterprises, that
is, in this example, the number of participating enterprises is 2=m , however our model is
general and is valid for any 1≥m . This is illustrated in Fig. 6.

E1 E2
Em

VE

E1 E2

VE

E1

VE

m > 2 m = 2 m = 1

a) b) c)

join virtual enterprise
E- enterprise
VE- virtual enterprise

E1 E2
Em

VE

E1 E2
Em

VE

E1 E2

VE

E1 E2

VE

E1

VE

E1

VE

m > 2 m = 2 m = 1

a) b) c)

join virtual enterprise
E- enterprise
VE- virtual enterprise

join virtual enterprise
E- enterprise
VE- virtual enterprise

Fig. 6: Virtual enterprises with different number of composing enterprises.

Though our model makes no assumptions about the nature of the business between the
composing enterprises it is worth mentioning that the case where 2>m is typical of business
partnerships where more than two enterprises gather together to compose a service that is
presented as a single service to external users. The case where 2=m is typical of
applications where a supplier and a provider decide to build a virtual enterprise to make the
provision of the service more efficient. The last case, where 1=m is mentioned here for
generality and because it is conceivable that the owner of an enterprise might think ahead
and design its enterprise as a virtual enterprise and with the intention of attracting business
partners to join it.

 TAPAS D5

11

3.4. Extendibility and recursivity of the model

A question that inevitably arises at this point of this discussion is how the objects to which
the virtual objects point to in Fig. 5 are realised. In other words, where are the real objects
physically located?

To answer the question about where the physical objects accessed from within a virtual
enterprise are located, we can say that our model of a virtual enterprise is general, extendible
and recursive. We do not impose restrictions about the location of the actual objects shown in
Fig. 5. Nor do we impose restrictions on the realisation or nature of E1 and E2. In our model,
an enterprise that joins a virtual enterprise can be either real or virtual. This flexibility of our
model is in line with new trends in the electronic business world where users are offered
services that are composed out of existing services offered by different companies. With
these arguments in mind, we can argue that the picture of a virtual enterprise presented in
Fig. 5 can be generalised as shown in Fig. 7.

E1 E2
En

VE1

Real objects: PCs,
printers, servers,

DBs, etc.

Virtual objects

E1 E2
En

VE2

E1 E2
En

VEn

VE1_2

VEjoin virtual enterprise
E- real enterprise
VE- virtual enterprise

E1 E2
En

VE1

E1 E2
En

VE1

Real objects: PCs,
printers, servers,

DBs, etc.

Virtual objects

E1 E2
En

VE2

E1 E2
En

VE2

E1 E2
En

VEn

E1 E2
En

VEn

VE1_2

VEjoin virtual enterprise
E- real enterprise
VE- virtual enterprise

join virtual enterprisejoin virtual enterprise
E- real enterprise
VE- virtual enterprise

Fig. 7: Virtual enterprises composed of virtual enterprises.

As it can be appreciated from the figure, the actual objects to which the virtual objects point
to, from within a virtual enterprise, are located somewhere in leaves of the tree of composing
enterprises. This means that an operation invoked on a virtual object might travel down the
tree crossing the boundaries of several enterprises till the operation is executed on the real
object. Naturally, the invoker of the operation does not need to know about the complexity
behind the interface he or she sees.

3.5. Virtual objects with interfaces

The creation of virtual object is only first step towards the creation of a virtual enterprise.
Once the virtual objects are available we need to build a means for regulating the access to
these objects. We need to regulate how, when and who can execute operations on the virtual
objects. The key to answer these questions is the provision of well-defined interfaces to the
virtual objects.

As shown in Fig. 8, in our model of virtual enterprise, each virtual object is provided with n
interfaces (I1, I2, … ,In) and each interface contains m operations such as R, W, Del, Update,

TAPAS D5

12

Send, Rcvd, Accept, Reject, etc. The idea is that different interfaces are assigned to different
role players. A role player to whom a given interface has been assigned has the privilege of
executing all the operation specified in the interface. An operation on a virtual object is
allowed only if it is a legal operation accordingly with the business contract and only if it is
invoked by a legitimate role player. This is enforced at run time by the electronic “x-
contract” shown in the figure. Notice that for simplicity, the figure shows only the set of
shared object of each participating enterprise. How the roles are assigned to entities is
discussed in Section 6. How a contract can be represented by a set of computaional objects,
referred to as an x-contract is discussed in Section 4.

shared objectsshared objects

I1: R, W, Del
O1.E1 I2: R, W

In: R

O1.E2 I2: Send, Rcvd
In: Update

I1: Send

E1
E2

VE

I1: R, W, Del O1.E1 I2: R, W
In: R

O1.E2 I2: Send, Rcvd
In: Update

I1: Send

Each virtual object has n interfaces
Each interface has m operations

x-contract

shared objectsshared objects

I1: R, W, Del
O1.E1 I2: R, W

In: R

I1: R, W, Del
O1.E1 I2: R, W

In: R

O1.E2 I2: Send, Rcvd
In: Update

I1: Send
O1.E2 I2: Send, Rcvd

In: Update

I1: Send

E1
E2

VE

I1: R, W, Del O1.E1 I2: R, W
In: R

I1: R, W, Del O1.E1 I2: R, W
In: R

O1.E2 I2: Send, Rcvd
In: Update

I1: Send O1.E2 I2: Send, Rcvd
In: Update

I1: Send

Each virtual object has n interfaces
Each interface has m operations

x-contract

Fig. 8: Virtual objects with interfaces.

4 Monitoring and enforcement of contracts

In the conventional world, a contract can be defined as a legal document, written in a human
language (for example, in English) that contains a set of clauses that stipulate the rights and
obligations that two or more signing parties agree to honour for a period of time stipulated in
the document.

In the business world, a contract is a document that regulates the interaction between two or
more parties willing to conduct some business. Business partnerships like that discussed in
Section 2 are inconceivable without a business contract.

No business partnership can run successfully unless the rights and obligations stipulated in
its contract are monitored and enforced. In the conventional world, monitoring and
enforcement of contracts is done manually. In this section we will show that it is possible to
implement an electronic version of a conventional contract that monitors and enforces what
the original contract dictates.

 TAPAS D5

13

4.1. Service level agreements, rights and obligations

To understand how a conventional contract can be converted into an electronic equivalent it
helps to think of a conventional contract as a document that contains a set of Service Level
Agreements (SLAs), namely, },...,,{ 21 nSLASLASLA , where n is an integer and should be

1≥n since a contract with no clauses is of no interests for this discussion.

We can think of each SLAi as a contractual clause that describes a specific technical aspect of
the global contract. It describes how a specific service should be provided and the metrics for
measuring the delivery of the service. For example, is a contract related to the delivery of
storage service, SLA1 would describe the amount of megabytes to be make accessible to the
customer, the response time, the number of simultaneous sessions, etc, whereas SLA2 would
describe security aspects such as guarantees of data protection, cryptographic algorithms,
length of cryptographic keys, and so on. Finally, SLA3 would describe how the payment for
the service should be provided, discounts and fines for failing to pay by due dates, and so on.

To convert a human language contract into its electronic equivalent we should be able to
abstract the contain of each SLAi as two sets: a set of Rights (R) and a set of Obligations (O)
that the contracting parties agree to honour.

An example of a contract represented as a set of SLAs is shown in Fig. 9. The contract
shown in this figure involves only two contractual parties, namely, enterprises E1 and E2. The
contract has been signed by the managers of these enterprises. Notice that for the sake of
clarity, each right and each obligation has been superscripted with the name of the party
responsible for it. For example, 1

1
MER is a right expected to be honoured by the manager of

enterprise E1, whereas 2
1
MER is a right expected to be observed by the manager of enterprise

E2. Notice that in each SLAi the manager of enterprise E1 has agreed to honour m rights and p
obligations. Similarly, the manager of enterprise E2 has agreed to honour n rights and q
obligations in each SLAi. It is probably worth mentioning that m, n, p and q are integers and
equal or greater than zero. Obviously, for a contract to make sense it should have at least one
right or one obligation.

Note that at this stage we are primarily concened with “horizontal” SLAs as defined in [2].
Such an SLA is between peer to peer entities. A “vertical” SLA typically specifies a quality
of service contract for resource usage between an application and the underlying middleware
services. Such SLAs will be used in QoS enabled application servers as discussed in [3].

TAPAS D5

14

E1,E2—Enterprises,
SLA—Service level agreement
Ri—Right, Oi—Obligation
ME1—Manager of E1, ME2—Manager of E2

Contract

Signatures
Manager E1

Alice Bob

Manager E2

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
n

MEMEME
m

MEME RRRRRRR =

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
q

MEMEME
p

MEME OOOOOOO =
SLAn=

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
n

MEMEME
m

MEME RRRRRRR =

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
q

MEMEME
p

MEME OOOOOOO =
SLA1=

…

E1,E2—Enterprises,
SLA—Service level agreement
Ri—Right, Oi—Obligation
ME1—Manager of E1, ME2—Manager of E2

Contract

Signatures
Manager E1

Alice Bob

Manager E2

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
n

MEMEME
m

MEME RRRRRRR =

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
q

MEMEME
p

MEME OOOOOOO =
SLAn=

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
n

MEMEME
m

MEME RRRRRRR =

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
q

MEMEME
p

MEME OOOOOOO =
SLA1=

…

Contract

Signatures
Manager E1

Alice Bob

Manager E2

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
n

MEMEME
m

MEME RRRRRRR =

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
q

MEMEME
p

MEME OOOOOOO =
SLAn=

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
n

MEMEME
m

MEME RRRRRRR =

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
q

MEMEME
p

MEME OOOOOOO =
SLA1=

Contract

Signatures
Manager E1

Alice Bob

Manager E2

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
n

MEMEME
m

MEME RRRRRRR =

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
q

MEMEME
p

MEME OOOOOOO =
SLAn=

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
n

MEMEME
m

MEME RRRRRRR =

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
q

MEMEME
p

MEME OOOOOOO =
SLAn=

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
n

MEMEME
m

MEME RRRRRRR =

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
q

MEMEME
p

MEME OOOOOOO =
SLA1=

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
n

MEMEME
m

MEME RRRRRRR =

},...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
q

MEMEME
p

MEME OOOOOOO =
SLA1=

…

Fig. 9: Service level agreements, rights and obligations in a contract.

4.2. Conversion of conventional into executable contracts

One of the main aims of the TAPAS project is to regulate the interaction between trading
partners with little or no human intervention. Since contracts are the means for regulating
business interactions, this is the same as saying that the TAPAS architecture should support
monitoring and enforcement of contracts automatically. In other words, we are interested in
contracts that can be executed, that is, animated. We call executable contracts x-contracts.

An x-contract can be defined as a piece of software that monitors and enforces at run time
the set of rights and obligations stipulated in a conventional contract written in a human
language.

An x-contract contains parts meant to be understood by humans and parts that are meant to
be understood by computers. This means that it contains computer-executable and human-
readable files. An x-contract built with current technology would contain XML and
executable java files, Word and ascii documents, graphics, pictures and whatever is
necessary to ease the execution of the x-contract.

Conceptually, it helps to think that the files that compose an x-contract are located between
the trading partners. However, the actual location of these file depends on the
implementation.

 TAPAS D5

15

We have learnt from our own experience that the most challenging task is the description of
what the original contract stipulates in its clauses into a formal mathematical notation that
can be unambiguously coded in a computer language.

The difficulties with the conversion are caused by the ambiguities that the original document
is likely to have. The existence of ambiguities is understandable since contracts are
traditionally written by a non-technical person (for example, a lawyer) and expected to be
read by other humans that would normally tolerate and make sense of obvious ambiguities.
The technical person in charge for implementing the x-contract has to be sure that no
ambiguities are left in the contract before coding it in a computer language.

For medium and large sized contracts it might be advisable to code the original contract into
an abstract validation model to formally validate the correctness of the contract. Then when
an acceptable degree of confidence about the correctness of the contract is reached, the
technical person simply translates the validation model into the implementation language to
produce the x-contract. This process is shown in Fig. 10.

English text contract
Contract for the purchase and supply of remote disk storage

Between: Alice (purchaser) and Bob (supplier)
1-Term: six month from 11 Feb 2003.
2-The supplier shall provide 100GB of disk for cache on Mon.
3-The purchaser shall pay for the service the Fri before the Mon….

x-contract
executable java-like files
XML-like files
text docs (word, ascii, etc).
graphics , etc.

Abstract notation for validation
(for ex. FSM)

interactive
conversion

process

English text contract
Contract for the purchase and supply of remote disk storage

Between: Alice (purchaser) and Bob (supplier)
1-Term: six month from 11 Feb 2003.
2-The supplier shall provide 100GB of disk for cache on Mon.
3-The purchaser shall pay for the service the Fri before the Mon….

x-contract
executable java-like files
XML-like files
text docs (word, ascii, etc).
graphics , etc.

Abstract notation for validation
(for ex. FSM)

interactive
conversion

process

Fig. 10: Creation of an x-contract.

What mathematical notation is used for describing a contract and what computer language is
used for programming this description is a matter of choice.

The selection of the programming language is of secondary importance as it does not affect
the design at this stage; in fact, there is no need to make any decision about it at this stage.
However, the selection of the mathematical notation at this stage might have a significant
impact on the development of the design.

As a reference, we can say that the mathematical notation used for describing the contract
should meet two requirements:

• It should have a semantic powerful enough to describe the rights and obligations
stipulated in the contract and the events that trigger them.

TAPAS D5

16

• It should have software tools for verifying that the contract is free of ambiguities
before attempting to code it into the programming language chosen for the
implementation.

We have found out that a mathematical notation that meets these requirements is the Finite
State Machines (FSM). Thus, we have decided to use them to describe our business contracts
[4]. Another argument that justifies our choice is that FSMs are supported by a sound and
well studied theory.

4.3. Use of FSMs for describing contracts

 Formally, a finite state machine M is defined as the quintuple],,,,[λδZIS , where
},...,,{ 21 msssS = , },...,,{ 21 niiiI = and },...,,{ 21 pzzzZ = are finite nonempty sets of states,

input symbols and output symbols, respectively. SIS →×:δ is the transition function and
ZIS →×:λ is the output function.

Informally, M describes an abstract system that stays in a given state until it receives an
external stimulus. When such stimulus is received, the system reacts by doing something (for
example, sending an output signal) and then moves to a different state. Note that do
something might mean do nothing in some circumstances and that the new state is not
necessarily different from the previous. The behaviour of this abstract system is
deterministic. The quintuple],,,,[λδZIS unambiguously defines what to do and where to
go next.

Because of their high level of abstraction, FSMs are used to describe and model a great
variety of systems. In particular, the computer science community has gained a great deal of
experience in the use of FSMs for describing communication protocols, and built several
tools for validating such protocols. For example, Spin [5] is a well known protocol validator.

 We have introduced communication protocols into the discussion about x-contracts for a
valid reason: we strongly argue that from the point of view of the interaction and
synchronisation between the parties involved, x-contracts are equivalent to communication
protocols. We claim that x-contracts, as communication protocols are, can be precisely
abstracted by FSMs. The advantage of looking at contracts as FSMs is that we can put into
practice all the existing machinery that was originally developed for studying communication
protocols. For instance, we can resort to Spin to validate an x-contract before converting it
into the actual computer program that will enact it. The goal of a validation process is to
analyze what is known as the correctness properties of the system. In other words, the
essence of the validation is to discover, at an early stage, whether the execution of an x-
contract takes the contracting parties into unacceptable situations. Among other things,
validating the FSM model of an x-contract should reveal the existence of states (conditions in
the x-contract) that are not reachable, that is, states for which there is no path from the initial
state. If one of these unreachable states represents the receipt of the goods the situation
would be unacceptable and the x-contract would need to be re-written. In the same order, the
validator should show that at some point, the two contracting parties reach a final state (for
example, end of contract) instead of being left in a transient state for ever. To mention
another example, the validation should reveal whether the x-contract allows purchasers to
receive goods before paying for them.

 TAPAS D5

17

A question that naturally arises at this point is how the rights and obligations stipulated in a
contract can be represented in a FSM.

4.4. Mapping conditions, rights, obligations and events into a FSM

At the level of rights and obligations an x-contract is often more easily understood as a set of
FSMs, one for each contracting party. So, a contract between a purchaser and a supplier is
represented as two finite state machines: one FSM for the purchaser and one FSM for the
supplier, FSMP, FSMS respectively.

 The physical location of each FSM is irrelevant to the functionality of the contract and is
decided at the time of implementation. For the moment let us assume that FSMP is located
within the purchaser’s enterprise and FSMS is located within the supplier’s enterprise. To
enact the x-contract these two FSMs must share a common communication channel to
interact with each other, that is, the output of FSMP is somehow connected to the input of
FSMS and vice versa. We will now discuss how the rights and obligations stipulated in a
contract can be mapped into the FSMs.

To reason about the rights and obligations stipulated in a contract it helps to think of them as
operations. An arbitrary segment of a contract can be described by the following general
syntax:

if event1 & conditionq = true

perform operation1 and switch to state1

else if event2 & conditionq = true

perform operation2 and switch to state2

… … …

else if eventm & conditionq= true

perform operationm and switch to statem

This syntax expresses the idea that, at some point an contract can be at any of n possible
conditions (condition1, condition2,…,conditionn). If the x-contract is in a given conditionq
(for example, WatingForOffer), there is a finite and well defined set of events (event1, event2

, …,eventm) that can affect the future behaviour of the x-contract. The occurrence of eventi
determines what objects (variables, files, database, etc.) within the system change their
values, that is, the event determines to which new condition the systems switches. Similarly,
there is a finite and well defined set of operations (operation1 , operation2 ,…, operationm)
that can be executed when the system is in conditionq. The eventi determines the operation to
be executed.

Bearing in mind the definition of a FSM presented in Section 4.3, we argue that the set of
conditions of the general syntax presented above can be mapped into the set S of states of a
FSM. Similarly, the set of events can be mapped into the set I of input symbols of the FSM.
In the same order, the set of operations can be mapped into the set Z of output symbols of the
FSM. Finally, we can map the set of switches to the next condition into the transitional

TAPAS D5

18

function δ. It is important to bear in mind that the operation donothing is a valid operation. In
this discussion we represent it with the symbol ε.

Thus, in terms of FSMs, we can express the above syntax as shown in Fig. 11.

stateq

state1

state2

statem

e 1/o 1

e2/o2

e
m /o

m

e-event, o-operation

…
stateq

state1

state2

statem

e 1/o 1

e2/o2

e
m /o

m

e-event, o-operation

…

Fig. 11: Mapping of conditions, events and operations into a FSM.

4.5. Invocation of rights and obligations

To illustrate how the rights and obligations are triggered we will examine Fig. 12. This figure
shows a snapshot of the two FSMs that describe the x-contract between two contracting
enterprises, for the sake of the discussion let us say that these two enterprises are the
purchaser and the supplier of some goods.

Supplier’s
FSM

supplier’s rights

purchaser’s rights

purchaser’s obligations

statem+1

em+1/om+1

Purchaser’s
FSM

states

statez ez/oz

ei/ε

supplier’s obligations

state1

stateq state2

statem

e 1/o
1

e2/o2

e
m /o

m

statepstatem+2
…

em+2/om+2

ep/op

state1

e1/o1

…

Supplier’s
FSM

supplier’s rights

purchaser’s rights

purchaser’s obligations

statem+1

em+1/om+1

Purchaser’s
FSM

states

statez ez/oz

ei/ε

supplier’s obligations

state1

stateq state2

statem

e 1/o
1

e2/o2

e
m /o

m

statepstatem+2
…

em+2/om+2

ep/op

state1

e1/o1

…

Fig. 12: Execution of an x-contract between a purchaser and a supplier..

To reason about how the contractual rights and obligations can be monitored and enforced by
FSMs, it is useful to look at the rights and obligations a contracting

 TAPAS D5

19

enterprise has at a given state of the execution of the x-contract. In terms of FSMs, this is
equivalent to looking at the set of operations that can be executed when the FSM of
contractual party is in a given state stateq. It is useful to classify this set into two subsets: the
subset of operations the owner of the FSM has the right to perform and the subset of
operations that person has the obligation to perform, },...,,{ 21 mooo and },...,,{ 21 pmm ooo ++ ,
respectively.

In the snapshot of the execution of the contract shown in Fig. 12 the purchaser’s FSM is in
stateq, whereas the supplier’s is in statep. As it can be appreciated from the figure, the rights
and obligations the purchaser has when his FSM is in stateq can be mapped into the sets

},...,,{ 21 mooo and },...,,{ 21 pmm ooo ++ , respectively.

Executing an operation from the subset },...,,{ 21 mooo means exercising a right given by the
x-contract. Since each operation io is paired to an event ie , the operation io can be executed
only after the occurrence of ie . How does event ie occur?

Event ie can be triggered internally within the purchaser’s enterprise or externally, say for
example, within the supplier’s enterprise and then notified somehow to the purchaser’s FSM.
Since we are talking about rights, the execution of operation io is optional; because of this,
event ie might be deliberately triggered by the purchaser (for example, when the purchaser
wishes to send a purchase order). Also, it can be the result of an unavoidable situation within
the purchaser’s enterprise (for example, a notification that the mainframe computer is non-
functional) or it can be triggered by a notification received from the supplier (for example,
when the supplier wishes to offer a new item to the purchaser).

Executing an operation imo + from subset },...,,{ 21 pmm ooo ++ means complying with the
contractual obligations the purchaser has when his FSM is in stateq. As with the rightful
operations, the obligatory operations are paired to events which are triggered internally, or
externally.

It is important to understand that exercising a right at one side of the contract might or might
not have an effect at the other side. This depends on what the text of the original contract
stipulates. The execution of operation io at the purchaser’s side might trigger a right, an
obligation, or nothing at the supplier’s side. By nothing we mean that the supplier’s FSM is
no notified about the execution of the operation io at the purchaser’s side. Similarly, the
execution of an obligatory operation imo + from the subset },...,,{ 21 pmm ooo ++ might trigger a
right, an obligation or nothing at the supplier’s side.

The dashed line pointing from the pair 11 / oe at the supplier’s side to the pair pp oe / at the
purchaser’s side implies that in states the supplier has the right to execute the operation 1o .
Obviously, we are assuming that text of the original contract stipulates that the purchaser
(being in stateq) has the obligation to execute operation po upon receiving a notification of
the execution of operation po at the supplier’s side when the supplier is in states. Similarly,
the dashed line pointing from mm oe / to zz oe / shows that in stateq the purchaser has the right
to execute the operation mo . As a response to this operation, the supplier has the obligation

TAPAS D5

20

to execute the operation zo . The dashed line from 11 / oe to ε/1e shows that the purchaser’s
has the right to execute the operation 1o . However, the execution of such operation demands
nothing at the supplier’s side.

4.6. Interception of operations on virtual objects

A question that we have not addressed explicitly yet is how the x-contract regulates the
execution of operations on the virtual objects. In our model of virtual enterprise, an x-
contract works as an interceptor of operations. This is shown in Fig. 13.

 The figure shows some steps of the execution of an x-contract between two arbitrary
enterprises, namely, E1 and E2. It is assumed that E1 is a supplier and E2 a purchaser.

The figure shows the behaviour of the contract when a role player from the purchaser’s
enterprise decides to place a payment. When this role player decides to place a payment
(presumably by issuing a command from his keyboard) a notification of this event is sent to
the purchaser’s FSM (1). Receiving this notification causes the operation pay to be invoked
on one of the interfaces of the payment.E2 virtual object (2). This operation is forwarded (3)
to the actual object payment.E2 located within the enterprise E2. Once the payment is placed
in the actual object payment.E2, an event is sent to the supplier’s FSM. At the supplier’s FSM
this event is received as PaymentRcvd (4). This event triggers the invocation of the operation
collect (5) on one of the interfaces of the virtual object payment.E2. This invocation is
forwarded (6) to the actual object payment.E2 located within the enterprise E2. Upon
collecting the payment, the supplier’s FSM makes a transition from state Waiting for
payment into state Shipping item. In this state the supplier’s FSM waits until a role player
from the supplier’s enterprise issues a command (let us say from her keyboard) to indicate
that the item is ready for delivery. This event is received by the FSM as ItemReady (7).
Receiving this event causes the operation send to be invoked (8) on one of the interfaces of
the virtual object item.E1. This operation is forwarded (9) to the actual object item.E1 located
within the enterprise E1.

shared obj.

I1: send item.E1 I2: receive
In:

payment.E2 I2: collect
In: refund

I1: pay

E1 E2

VE

I1: send, item.E1 I2: receive
In:

payment.E2 I2: collect
In: refund

I1: pay

shared obj.

Waiting for
payment

Shipping
item

PaymentRcvd/collect

Supplier’s FSM

Waiting
for item

Editing
payment

Pay/pay

Purchaser’s FSM

(1)

(2)

(3)

(4)

(5)

(6)

x-
co

nt
ra

ct
vi

rtu
al

 o
bj

s. ItemReady/send
(8)

(9)

(7)

shared obj.

I1: send item.E1 I2: receive
In:

payment.E2 I2: collect
In: refund

I1: pay payment.E2 I2: collect
In: refund

I1: pay
I2: collect
In: refund

I1: pay

E1 E2

VE

I1: send, item.E1 I2: receive
In:

payment.E2 I2: collect
In: refund

I1: pay
I2: collect
In: refund

I1: pay

shared obj.

Waiting for
payment

Shipping
item

PaymentRcvd/collect

Supplier’s FSM

Waiting
for item

Editing
payment

Pay/pay

Purchaser’s FSM

(1)

(2)

(3)

(4)

(5)

(6)

x-
co

nt
ra

ct
vi

rtu
al

 o
bj

s. ItemReady/send
(8)

(9)

(7)

Fig. 13: An x-contract as an interceptor of operations.

 TAPAS D5

21

4.7. Role players and x-contracts

Notice that in Fig. 13, all the operations (pay, collect and send) invoked on the virtual objects
executed successfully, that it, they were intercepted by the x-contract and approved. This
means that in that discussion we assumed that all the operations were invoked by legitimate
role players. This is an exception. It is conceivable that in practice illegitimate role players
will try to execute operations they are not entitled to. Invocations of illegitimate operations
will be intercepted by the x-contract, disapproved and rejected. How the x-contract decides
who is a legitimate role player and who is not is discussed in Section 6.1.3.

It is important to realise that the pair of FSMs shown in Fig. 13 monitors and enforces only
one instance of a business process between the purchaser and the supplier. In our view over
business interaction, we consider than more than one instance of different business processes
can be active at the same time (see Section 2). If this is true, we would need one pair of
FSMs for each instance of business process. As it was discussed in Section 2, two instances
of a business process do not necessarily follow the same path. Consequently, different pairs
of FSMs, involve different role players.

The set of role players associated with a given pair of FSMs is called a role set. This is
discussed in-depth in Section 6.1.2.

Naturally, different instances of business processes might interact with each other. How to
control the interaction between the pairs of FSMs that represent the business process
instances is still an open question. We believe that this can be done with the help of another
FSM, a kind of parent FSM to look after the pair of FSMs that represent the business process
instances.

5 Trust and trust-related models

Of fundamental importance to TAPAS are the issues of trust and trust management, and the
interrelationships between the notions of behavioural trust, dependability or trustworthiness,
dependence, confidence, and failure. A firm understanding of these notions becomes crucial
when we assume that the individual organisations (enterprises) within a TAPAS-compliant
Virtual Enterprise (VE) might be mutually suspicious of one another, and as such might
require their trust relationships to be monitored, and wherever possible enforced, so as to be
seen to be trustworthy.

In this context, we define behavioural trust as the mutual judgement of and dependence on
the expected behaviours of one another’s organisations in specifically agreed inter-
organisational interactions, such that there is a mutual feeling of relative confidence in these
interactions, even though negative consequences are possible. Such negative consequences
will appear as violations of trusted interactions, and thus be interpreted as failures of agreed
trust relationships.

5.1. Trust and related concepts

It is instructive to examine the notion of trust and its related concepts of dependability,
dependence and failure.

TAPAS D5

22

We begin by examining the concept of failure using the normally accepted dictionary
definitions of the terms system and judgement:1

“A given system, operating in some particular environment (a wider system)
may fail in the sense that some other system makes, or could in principle have
made, a judgement that the activity or inactivity of that given system
constitutes failure.

The second system, the judgemental system, may be an automated system, a
human being, a relevant judicial authority, or whatever. (It may or may not
have a documented system specification to guide it.) Different judgemental
systems might, of course, come to different decisions regarding the given
system. Moreover, such a judgemental system might itself fail – in the eyes of
some other judgemental system – a possibility that is well understood by the
legal system, with its hierarchy of courts. So, we can have a (recursive) notion
of failure which is defined merely in terms of what are taken to be as the
fundamental, dictionary-defined, concepts of system and judgement, and
which clearly is a relative rather than an absolute notion.”

This definition of failure leads naturally to a related definition of dependability, which
includes the system attributes of reliability, availability, security and safety, a property such
that reliance can be placed upon the services a system is expected to deliver:

“Given the above definition of failure, the concept of dependability can be
simply defined as the quality or characteristic of being dependable, where the
adjective dependable is attributed to systems whose failures are judged to be
sufficiently rare or insignificant.

Dependability measures can be assessments of past behaviour or predictions
of future behaviour, relating to instantaneous events demanding response, or
durations of system service. It is convenient to frame a totally dependable
system as one that has a numerical measure of 1, and a totally undependable
system as one with a measure of 0. In reality such measures will neither be
expressed as single numbers nor single probability distributions, but rather as
sets of measures corresponding to sets of types of the dependability of
concern. Moreover, there may be even greater difficulty in establishing actual
numerical values, for example, in the measures of security aspects of
dependability.”

These notions of failure and dependability lead to the concept of dependence:

1 The definitions of the terms failure, dependability, dependence, and the discussion on trust given
herein in inset text, quoted essentially literatum, are taken from a private communication written by
Brian Randell, University of Newcastle upon Tyne. For background concepts, see [6, 7].

 TAPAS D5

23

“It is commonplace to say that the dependability of a system should suffice for
the dependence being placed upon that system. What is meant by the term
dependence of A on B is a measure of B’s undependability impact on A’s
dependability. Clearly, this measure can vary from a value of 1 (total
dependence – in which case, any failure of B will cause A to fail) to a value
of 0 (total independence – in which A will not fail when B fails).”

This notion of dependence leads in turn to the concept of trust:

“It is recalled that the NSA definition of a trusted component is (roughly)
“one whose failure could cause your security policy to fail”

It seems that the trust A has in B could be described as acceptable
dependence; that is, the dependence of A on B allied to a judgement that this
level of dependence is commensurate with A’s acceptance of B’s
dependability.

This judgement (made by or on behalf of A about B) may be explicit, and even
laid down in a contract between A and B; but might also be implicit, or
dispositional to the extent that A has a consistent tendency to trust B across
spectrums of situations, or may even be unthinking. It may also be situational
in that A has no option but to put its implicit trust in B, irrespective of the
beliefs of the attributes of B in a given situation2.

Thus to the extent which A trusts B, need not assume responsibility for
providing the means of tolerating B’s failures. (The question of whether A is
capable of doing so is another matter.) Indeed, turning things around, the
extent to which A fails to provide means of tolerating B’s failures is a measure
of A’s (perhaps unthinking or unwilling) trust in B.

Any system which provides evidence that can be used to justify A’s trust in B,
and therefore provide confidence to A, can itself of course fail. One such
failure of a confidence-building system (which might be system A itself)
producing an underestimate of A’s dependence on B, which could lead to a
decision to avoid using B, even though B is adequately dependable. What is
normally a more serious type of failure of a confidence-building system puts
A at unacceptable risk due to a failure of B, the case where system B proves to
be untrustworthy.

A distinction between trust and confidence is that the former leads to the act
of becoming dependent, whilst the latter concerns how much one might feel
about this act.”

2 The authors have added these comments to Randell’s text in order to clarify the nature of dispositional
and situational judgements.

TAPAS D5

24

5.1.1. Trust Propositions

The above notions of failure, dependability, dependence, and trust, particularly with respect
to behavioural trust, correspond to the concept of trust propositions defined in [8]. These are
of the general form:

A trusts B on matters of X at epoch T

Here, A and B may be people, computers and their specific resources and services, or even
small or large enterprises that admit to trust relationships. In the proposition, A is placing a
trust relationship (dependence) on B with respect to matters of X. Such matters constitute the
set of rights and obligations of A with respect to B, such that B permits access to specific
resources (services) provided by B to A provided that A fulfils specific obligations
(conditions) laid down by B. Epoch T represents the period during which both A and B
observe the well being of the their trust relationship without incidence of failure.

Trust propositions of this type underpin the semantics of the executable contracts (x-
contracts) described earlier in Section 4.2. They tie together the issue of trust, the
dependences that inter-organisational parties place on the expected principles and behaviour
of one another; the issue of security, the assurances that both the integrity and (optionally)
the privacy of inter-organisational interactions are maintained; and the issue of contractual
bindings, the explicitly certified agreements that inter-organisational parties make about their
respective expectations of trust and security with respect to one another.

5.2. Goal and objectives

It is a principal goal of TAPAS to develop an architecture that enables the specification and
implementation of dependable x-contracts, where the underlying objectives are two-fold:

5.2.1. Negotiable multi-party trust agreements

Such agreements are typically based on the respective reputations of the parties involved,
where each reputation is a measure of previously observed trusted behaviour. In real life,
initial trust by one party of another typically begins by recommendation of a trusted third
party, or by blind faith. Examples of such trust include, the purchase of a software product
from a Web site (will the company representing the Web site sell my private purchase
information to other companies?), the downloading of a software product to a personal
computer (will the software do what I expect it to do?), and, engagement with an Internet
Service Provider (will the ISP automatically log my private traffic information?). Each of
these situations, and many others, requires specific agreements on specific matters of trust by
specific parties operating in specific roles. And, as such, these trust arrangements must be
fairly negotiated in order to guarantee unambiguous and unanimous decisions.

TAPAS is accordingly investigating techniques for fairness in negotiable multi-party trust
agreements, with specific reference to the requirements of role-based security policies for
authentication, integrity and authorisation. Our early work in the area of fair exchange
protocols is presented in the Appendix [9]. Moreover, this appendix also includes our initial
ideas on formalising trust relations [10].

 TAPAS D5

25

5.2.2. Certified dependable X- contracts

It is conjectured that the aforementioned negotiable agreements will establish the foundations
for creating system enforceable contracts which commit all parties involved to respect certain
obligations in return for certain rights; which, in this case, will be the specification of the
security policies agreed and the corresponding encoded implementations of these policies to
be enforced at run-time. Each such contract will become certified when all party members
have countersigned it with their respective digital signatures, together with endorsements
from the trusted third parties responsible for the provisioning of those signatures.

TAPAS is therefore also investigating processes for reliably creating and safeguarding
certified x-contracts and for realising an effective contract monitoring service for auditing
detected run-time deviations of contractual obligations and rights, and for reporting them to
responsible system adjudicator services for suitable action.

Whilst the general architecture for VEs with x-contracts has been described, the following
presents the specific Role-based Access Control (RBAC) Architectural Model for controlling
inter-organisational interactions within VEs, mediated by x-contracts; since x-contracts are
themselves trusted components, provision must be made to ensure that their implementations
are dependable and thus trustworthy.

6 Trust enforcement

It is clearly not possible to prevent mutually suspicious enterprises within a VE from
misbehaving and attempting to cheat on their agreed trust relationships. It is simply not
possible to force an individual enterprise to behave respectably, simply because its internal
management and resource behaviours are outside the control of any associated x-contracts!

The best that can be achieved is to ensure that all contractual interactions between such
enterprises are funnelled through their respective x-contracts, and that all other non-
contractual interactions are disallowed.

This can only be secured if all interfaces for interactions within a VE are via x-contracts. In
this way, x-contracts serve as security firewalls: firstly, to protect unwanted interactions from
outsiders not privy to the contract; secondly, to protect each legitimate enterprise in its
required security actions for authentication, integrity, authorisation, and availability; and
finally, to ensure that all contractual interactions are monitored and audited so that they may
be inspected by all parties involved for integrity checks, and thereby allow the possibility for
each party to refer disputes to appropriate VE adjudicators for resolution.

The TAPAS RBAC architectural model with x-contracts is intended to achieve this level of
security for all inter-organisation interactions within a VE.

6.1. Secure RBAC with x-contracts

The intent of an access control system is the protection of a system and its resources against
unauthorised access, disclosure, modification or destruction of its services and its
information. This can only be accomplished by ensuring, among other things, that the
identification and authentication of the legitimate users of system services and their

TAPAS D5

26

encapsulated resources are securely verified. The decision of which access controls to
implement is not only based on organisation (enterprise) policies but also on two generally
accepted standards of practice: separation of duties and the principle of least privilege,
where the former assigns roles to duties and entities to role-players, whether such entities
are human beings or machines; whilst the latter assigns only those privileges to role-players
necessary to achieve their respective duties. For such controls to be accepted and, therefore,
used effectively, they must not be disruptive to normal work flow activities nor place too
many burdens on the administrators, auditors, or authorised users of the system, especially
within a VE. Accordingly, such controls must be kept to the indispensable minimum of
effective simplicity and convenience.

This is the goal of the TAPAS RBAC architectural model described below.

6.1.1. RBAC model requirements

The provision of an extensible RBAC model for TAPAS is being designed to satisfy several
requirements:

• Each enterprise within a VE is autonomously responsible for its own role
management and role playing assignments, thereby ensuring that each enterprise
controls its own people and resource management policies.

• Each x-contract unambiguously specifies for each enterprise the associated role
playing managers and the rights and obligations of their assigned role players.

• Each x-contract is capable of authenticating the identities of each enterprise within a
VE, its role playing managers and its role players, and vice-versa.

• Each x-contract ensures authorised access to rights by role players within the rules
laid down by their associated obligations, and provides safeguards against
unauthorised access.

• Each x-contract serves as a trustworthy custodian of the trust model shared by each
enterprise in their respective VE.

These requirements are considered to be the minimum set necessary to realise an effective
and usable RBAC scheme for secure inter-organisational interactions within VEs.

6.1.2. Components of the TAPAS RBAC Model

The TAPAS RBAC model is an extended form of the emerging NIST (National Institute of
Standards and Technology) core RBAC standard [11]. These extensions are identified as
interfaces and obligations in the RBAC component model shown in Fig. 14.

 TAPAS D5

27

Fig. 14: Extended NIST Core RBAC Model

Entities Roles

Sessions

Interfaces Operations Objects

Obligations

Permissions

Entities Roles

Sessions

Interfaces Operations Objects

Obligations

Permissions

one-to-many relationship
many-to-many relationship

Entity-role
assignment

Role-permission
assignment

Entity-session
assignment

Session-role
assignment

Fig. 14: Extended NIST Core RBAC Model

Entities Roles

Sessions

Interfaces Operations Objects

Obligations

Permissions

Entities Roles

Sessions

Interfaces Operations Objects

Obligations

Permissions

Entities Roles

Sessions

Interfaces Operations Objects

Obligations

Permissions

Entities Roles

Sessions

Interfaces Operations Objects

Obligations

Permissions

one-to-many relationship
many-to-many relationship
one-to-many relationshipone-to-many relationship
many-to-many relationshipmany-to-many relationship

Entity-role
assignment

Role-permission
assignment

Entity-session
assignment

Session-role
assignment

The basic concept of RBAC is that entities (users, machines, services, etc.) in each enterprise
of a VE are assigned to roles, permissions are assigned to roles, and entities acquire
permissions by being members of roles. In this instance, permissions comprise rights and
obligations, and rights comprise interfaces, themselves comprising operations on objects
(resources or services) of one or more other enterprises within the VE. It is highlighted here
that each entity (role player) has an associated state machine, as described earlier in
Section 4.7. The number of entities, and therefore role players, associated with each state
machine instance is termed a role set, each of which joins3 a session that identifies that role
set’s transaction. All members of a role set must first join a session before they may interact
with an x-contract and conduct business. These state machine instances are maintained by the
x-contracts of their respective VEs.

The basic NIST core RBAC model includes requirements that entity-role, session-roles and
permission-role assignments can be many-to-many; this is represented in Fig. 14 by the
double-headed arrows. Also, in this model each session is associated with a single entity;
however, a given entity can be associated with one or more sessions (a one-to-many
relation); once an entity is associated to a session, the entity can activate many roles.
Similarly, for permissions, a single permission can be assigned to many roles and a single
role can assigned to many permissions. Finally, it is required that each entity can if desired
simultaneously exercise permissions of multiple roles, each of which belongs to some role
set4.

6.1.3. RBAC with digital signature authentication and authorisation

The proposed TAPAS RBAC scheme is based on a simple Public Key Infrastructure (PKI)
which uses public key/secret key pairs for signing and verification.

While PKI standards are prevalent and well understood, the following summarises the
essential characteristics of the scheme necessary to TAPAS RBAC controls in x-contracts:

3 This join protocol is a subject of future research.

4 The allowed concurrency instances of role set types permitted in x-contracts is a subject of future
research.

TAPAS D5

28

• Each entity and thus role player defined in an x-contract is unambiguously identified
by its Public Key Certificate (PKC), issued by its trusted Certificate Authority (CA).

• Each identified entity possesses a public/secret key pair, namely PK and SK
respectively. A copy of the public key is always included in the entity’s PKC,
whereas the secret key is kept secret by the entity.

• Each secret key of an entity can be used to form a digital signature that can be
verified by the use of the corresponding public key, using a standard digital signature
validation process.

• Each entity registers (either directly or indirectly via an authorised proxy) with a
trusted CA to obtain a PKC for the role it wishes to play. The PKC is digitally signed
by the CA using its secret key; so the authenticity of the PKC can be digitally verified
by the owner, and by any other interested entity, using a digital signature validation
process and the CA’s public key.

These characteristics can now be related to the principal identities and roles specified in
X-contracts, and known to the respective enterprises of their associated VEs.

6.1.4. Principal role players in x-contracts

Five types of roles are identified for each x-contract and its associated VE:

1. The Enterprises (E1, E2 , ….., En) participating in the VE;

2. The specific Role Managers (RME1(1-n), RME2(1-n) ,.…., RMEn(1-n)) of each participating
Enterprise;

3. The Role Players (RPRM1(1-n), RPRM2(1-n) ,….., RPRMn(1-n)) assigned specific roles by
their respective RMs;

4. The Contract Manager (CM) responsible for enacting the x-contract;

5. The x-contract itself.

Each of these identity role types is securely defined by a PKC issued by its respective trusted
CAs within each VE, of which there are four types:

i. The Contract Certificate Authority (CCA) responsible for issuing each enterprise’s
PKCE and their contract manager’s PKCCM ;

ii. The Contract Manager Certificate Authority (CMCA) responsible for issuing its
PKCx-contract;

iii. The Enterprise Certificate Authority (ECA) responsible for issuing its role
manager’s PKCRMs;

iv. The Role Manager Certificate Authority (RMCA) responsible for issuing its role
player’s PKCRPs.

 TAPAS D5

29

These CAs and their issued PKCs are arranged hierarchically to form a trust chain for
certificate validation, authentication and access rights authorisation, as shown in Fig. 15.

Fig. 15: Virtual Enterprise (x-contract) CA and PKC Hierarchies

ECAs PKCEs CMCA

RMCAs

CCA

PKCRMs

PKCCM

PKCX- contract

PKCRPs

Fig. 15: Virtual Enterprise (x-contract) CA and PKC Hierarchies

ECAs PKCEs CMCA

RMCAs

CCA

PKCRMs

PKCCM

PKCX- contract

PKCRPs

6.1.5. Digital signature authentication and authorisation processes

When one role player (for example B) from one enterprise interacts with another role player
from another enterprise, within the same VE, the former presents (inputs) its PKC certificate
to the VE’s x-contract, together with a statement of its specific right’s instance, namely, the
interface and the operation of the object it wishes to invoke on its target. The authentication
process of the x-contract checks that the requesting entity is a legitimate party and that its
request can be authorised. This process also checks that the requesting public/secret key
identities are complementary.

Let us assume that B’s PKC was issued by A. In the picture shown in Fig. 16, B’s has
already been received by the x-contract. B’s PKC contains the following information:

• B: the name of the role player.

• PKB: the public key of B as a role player.

• A statement of the specific right’s instance, namely, the interface and the operation of
the object it wishes to invoke on its target.

The above information is double signed: It contains DSA, that is, the digital signature of the
issuer of the certificate. The result of this is signed again, this time by the owner of the PKC,
this is represented as DSB

As shown in the figure, the x-contracts is in possession of a copy A’s PKC. A’s PKC
contains the following information:

• A: the name of the role player.

• PKA: the public key of the role player.

TAPAS D5

30

The above information is digitally signed with DSO, that is, by the enterprise certificate
authority responsible for issuing A’s PCK that entitles A as a role manager.

As indicated by the arrowed line that goes from PKA to DSA, the x-contract can use A’s
public key to verify that DSA is actually A’s digital signature; correctness of DSA would
indicate that B’s PKC was issued by A. Similarly, as indicated by the arrowed line that goes
from PKB to DSB, the x-contract can retrieve PKB from B’s PKC and check that the PKC
signed with DSB conserves its integrity.

X-contract

Certificate of entity A, the certificate issuer of entity B

Certificate of entity B

PKA

PKB DSA DSB

(2) Integrity check and that B signed the certificate

(1) Check that B was issued by A

DS0A

B Permit for operation x on interface y of object z

Fig. 16: X contract authentication and authorisation processes

X-contract

Certificate of entity A, the certificate issuer of entity B

Certificate of entity B

PKA

PKB DSA DSB

(2) Integrity check and that B signed the certificate

(1) Check that B was issued by A

DS0A

B Permit for operation x on interface y of object z

Digital signature
formed with SKo

Digital signature
formed with SKBX-contract

Certificate of entity A, the certificate issuer of entity B

Certificate of entity B

PKA

PKB DSA DSB

(2) Integrity check and that B signed the certificate

(1) Check that B was issued by A

DS0A

B Permit for operation x on interface y of object z

Fig. 16: X contract authentication and authorisation processes

X-contract

Certificate of entity A, the certificate issuer of entity B

Certificate of entity B

PKA

PKB DSA DSB

(2) Integrity check and that B signed the certificate

(1) Check that B was issued by A

DS0A

B Permit for operation x on interface y of object z

Digital signature
formed with SKo

Digital signature
formed with SKB

6.1.6. The authentication protocol between enterprises and their Virtual Enterprise x-
contracts

When an x-contract is activated (at the time it is scheduled) the following is assumed to be
true:

• Each enterprise identified in the x-contract knows the PKC of that contract; and the x-
contract knows the PKC of each enterprise.

• Each x-contract also knows the PKCs of all Role Managers within the VE, and each
enterprise knows the PKC of the Contract Manager.

Such knowledge became true when the x-contract was negotiated and created.

The PKC state of one enterprise within a Virtual Enterprise (VE) and its x-contract are
shown in Fig. 17, where the terms CM, XC, E and RM denote instances of the Contract
Manager, the Executable Contract, the Enterprise, and the Role Managers respectively,
within the VE.

 TAPAS D5

31

Fig. 17: X-contract and Enterprise known PKC states

Both the Enterprise and the X-contract know the public key of the Contract Certificate
Authority (CCA) and are thus capable of following the certificate chain of trust from its root.

Given this situation, the following mutual authentication process between each enterprise (E)
within a VE and specified by its associated X-contract (XC) is as follows:

 ` XC -> E : (Challenge (a once only value)

 E -> XC : (Challenge, PKCE)DSE

 XC -> E : (Challenge, PKCX-contract)DSX-contract

 E <-> XC : ((OK), DSEP < -> DSXC))

This authentication protocol uses the same process of verifying two digital signatures as
described earlier. Here, the authenticity (digital signatures) of E and XC are verified using
the public keys defined in their respective PKCs. The certificates are respectively
authenticated using the public keys of their issuing CAs (i.e., the CCA and the CMCA
respectively). This protocol can of course be conducted over a secure channel for the purpose
of confidentiality using any method of the IPSEC standard [12].

Likewise, a similar authentication protocol is performed by role managers and their assigned
role players for each enterprise in a VE. The specific roles defined in an x-contract are
associated with the PKC of its role manager. In this way, each specific role player in one
enterprise interacts with a different role player in another enterprise by issuing a request to
the x-contract of the form

Invocation-request (PKCRP, session, required permission) DSRP

PKCRP is the certificate of the role player as described in Fig. 16. It identifies its issuing role
managers PKCRM and the required permission denotes by the (interface, operation, object)
tuple.

The target enterprise receives a corresponding request of the form

Enterprise X-contract
Known PKCs

E

RM

PKE DSCCA

PKRM DSE

Known PKCs

XC

DSCM

PKXC DSCM

PKE DSCCA
XC PKXC E

RM PKRM DSE

CM PKCM DSCCA

CM PKCM DSCCA

Enterprise X-contract
Known PKCs

E

RM

PKE DSCCA

PKRM DSE

Known PKCs

XC

DSCM

PKXC DSCM

PKE DSCCA
XC PKXC E

RM PKRM DSE

CM PKCM DSCCA

CM PKCM DSCCA

TAPAS D5

32

Invocation-request (PKCx-contract, session, required permission) DSx-contract

then knowing that this request has been validated by the x-contract of the VE.

Again, such request transmissions can be conducted over private and thus confidential
channels using symmetric rather than public key cryptography.

The session value noted here identifies the invocation context between one role-player
instance and another role-player instance between their interacting enterprises and the
contractual agreement laid down in their associated X-contract, within the same session, and
without possibility of forgery. Each such session value for these contractually bound roles
comprises a unique nonce identifying both roles based on a summary (MAC) on their
respective PKC certificates, together with their assigned session number (common to all role
pairs within the same session), undersigned by the X-contract’s digital signature. This is the
fundamental requirement for secure communications between the session participants in one
enterprise, and the session participants in another enterprise both defined by their X-contract
for a given VE. This session value will always remain secure, unless it is stolen, together
with the secret key of the X-contract. The security of this method in general relies upon the
secure safeguards of all secret keys for and within an X-contract – otherwise, the trust
relationships of a VE will break down, and remain in place until their breach is discovered
and rectified, but only by the authorised observers of the associated X-contract rules.

This principle uniquely underlies the nature of secure communications within VE’s and
across their associated X-contracts.

6.1.7. Other aspects of the TAPAS RBAC model

There remain two outstanding issues of importance, namely, replay attacks, and Public Key
Certificate (PKC) revocation as described below.

Reply attacks

Replaying previous authenticated invocation requests is the ploy (attack) perpetrated by the
man-in-the-middle. Prevention of such attacks can be ensured if each interaction between
the enterprises in a VE via its X-contract always specifies a one-time-only value with each
request, such as an increasing sequence number or time-stamp, signed by the legitimate
transmitter’s unforgeable digital signature.

PKC revocation

Since the management of roles and their role playing assignments is the responsibility of
each enterprise in a VE, it seems natural to assume that each enterprise should be responsible
for revoking such role management and role playing assignments, and disallowing the use of
cancelled PKCs with respect to their X-contracts. It is essential for each enterprise of a VE to
notify its X-contract whenever it revokes an active PKC manager or role player, so that it
may close down the active associated session within it, and accordingly notify interested
parties of this event, including its X-contract’s legal parties.

 TAPAS D5

33

6.2. Middleware for x-contracts: non-repudiable information sharing

Regardless of the details of the implementation, any software designed to implement an x-
contract will contain two main components: a contract monitor and enforcer and a
middleware service for regulated, non-repudiable information sharing.

The contract enforcer is a piece of software that guarantees that the rights and obligations
stipulated in the contract are monitored and enforced. An example of obligation that can be
enforced by this piece of software is send offer within three days after signing the x-contract.

The middleware service is a layer of software that regulates the interaction between two (or
more) contracting parties who, despite mutual suspicion, wish to interact and share
information with each other. Thus the middleware provides generic services that can be used
to support arbitrarily complex interactions between contracting parties. From the viewpoint
of each party involved, the overarching requirements are (i) that their own actions meet
locally determined policies; and that these actions are acknowledged and accepted by other
parties; and (ii) that the actions of other parties comply with agreed rules and are irrefutably
attributable to those parties. These requirements imply the collection, and verification, of
non-repudiable evidence of the actions of parties who interact with each other. An example
of evidence that can be collected is a non-repudiable record that a payment was placed on a
certain date.

The details of the contract monitor and enforcer were discussed at large in Section 4, where
we proposed the use of FSMs for this purpose. The RBAC ideas presented here will have to
be integrated with the approach presented in Section 4, and is the subject of further work.
Next we discuss how to provide services for regulated, non-repudiable information sharing.

A promising appproach that seems to meet the requirements of the middleware service that
we need is the B2Bobject middleware developed by us [13]. The B2Bobj middleware
collects non-repudiable evidence about information sharing between parties that do not
necessarily trust each other. Once deployed, each party holds a local copy of shared
information encapsulated in objects. Access to and update of this information is subject to
non-repudiable validation by each party. It is assumed that each organization has a local set
of policies for information sharing that is consistent with the overall information sharing
agreement between the organizations (this agreement will be encoded in the x-contract). The
safety property of our system ensures that local policies of an organization are not
compromised despite failures and/or misbehavior by other parties; whilst the liveness
property ensures that if all the parties are correct (not misbehaving), then agreed interactions
would take place despite a bounded number of temporary network and computer related
failures.

TAPAS D5

34

Preparing
offer

Waiting for
response

Waiting for
payment

Purchaser’s FSM

Purchaser’s copy
of B2Bobj

B2Bobj

Waiting for
offer

Deciding to
buy

Preparing
payment

OfferRejected

SendRejected

Supplier’s copy
of B2Bobj

Supplier’s FSM

OfferAccepted

SendAccepted

OfferRcvd

ε

X-contractSigned

ε

X-contractSigned

ε

OfferReady

SendOffer

RejectedRcvd

ε

AcceptedRcvd

ε
(1)

(2)

(3)

Preparing
offer

Waiting for
response

Waiting for
payment

Purchaser’s FSM

Purchaser’s copy
of B2Bobj

B2Bobj

Waiting for
offer

Deciding to
buy

Preparing
payment

OfferRejected

SendRejected

Supplier’s copy
of B2Bobj

Supplier’s FSM

OfferAccepted

SendAccepted

OfferRcvd

ε

X-contractSigned

ε

X-contractSigned

ε

OfferReady

SendOffer

RejectedRcvd

ε

AcceptedRcvd

ε
(1)

(2)

(3)

Essentially, our middleware resembles a transactional object replica management system
where each organization has a local copy of the object(s) to be shared. Any local updates to
the copy by an organization (“proposed state changes” by the organization) are propagated to
all the other organizations holding copies in order for them to perform local validation; a
proposal comprises the new state and the proposer’s signature on that state. Each recipient
produces a response comprising a signed receipt and a signed decision on the (local) validity
of the state change. All parties receive each response and a new state is valid if the collective
decision is unanimous agreement to the change. The signing of evidence generated during
state validation binds the evidence to the relevant key-holder. Evidence is stored
systematically in local non-repudiation logs. For protocol details, see [13].

With this much background, we can hint at the overall implementation of an x-contract. The
implementation of a x-contract that involves a purchaser and a supplier is shown in Fig 18.
As can be seen, the rights and obligations of each contracting party are described, monitored
and enforced by two FSMs. Consequently, these two FSMs determine the behaviour of the x-
contract. In addition to this, a B2Bobj is used for collecting non-repudiable digital evidence
about the operations executed by the purchaser and the supplier.

The dashed line that goes from the supplier to the purchaser shows what happens when the
supplier sends an offer. When the offer is ready, the supplier invokes a send operation; the
supplier's FSM switches to its Waiting for response state and makes a SendOffer call to the
local copy of a shared B2Bobj that implements the operation (1). The local B2Bobj collects,
and signs, evidence of the operation and requests coordination of the proposed update to its

Fig. 18: Collection of non-repudiable digital evidence with a B2Bobj.

 TAPAS D5

35

state with the purchaser's B2Bobj (2). The purchaser's B2Bobj verifies the evidence provided
and makes an up-call to the purchaser's FSM to validate the B2Bobj operation (3). Upon
receiving the up-call, the purchaser's FSM switches to the Deciding to buy state. The dashed
line from the purchaser's FSM to the supplier's FSM shows how the purchaser's response is
transmitted to the supplier. The B2Bobj middleware ensures that all operations performed by
the purchaser and the supplier are recorded and are non-repudiable. One of the major
advantages of B2Bobj is that it ensures this without the need of involving centralised trusted
third parties.

7 Related work

7.1 Virtual enterprises

The term virtual enterprise is relatively new, it has been around only for the last ten years or
so, consequently, it is still used by different authors to refer to different systems. The
question about whether companies like Amazon.com that sell their products through the
Internet are virtual enterprises would trigger a debate. What is not clear yet is when an
organization should be considered virtual. This question is addressed in [14]. In this work,
the authors classify the existing implementations of virtual enterprises into six categories:

• Virtual faces: In this group of arguably virtual enterprises fall all the companies that
have extended their customer windows to the Web. Basically, they offer the same
service as they offer over the phone, fax and face-to-face.

• Co-alliance: In these virtual enterprises each composing enterprise brings
approximately equal amount of resources. There is not a clear leader in the
enterprise.

• Star-alliance: In these enterprises the existence of a dominant enterprise and group of
two or more satellite enterprises is evident.

• Value-alliance: The main feature of these enterprises is the existence of a well-
defined supply chain. The existence of the chain strengthens interdependence.

• Market alliance: These enterprises typically bring together a range of services,
provided by the composing enterprises, in a single package.

• Virtual brokerage: A virtual broker is basically an ad hoc enterprise built with the
intention of capturing the value of a short term (for example, at Christmas time)
market opportunity.

It can be argued that the there are not clear cut ways between the six categories of virtual
enterprises. However, this work is a good starting point for discussing virtual enterprises. It
is relevant to our project because it gives an idea about practical implementation of virtual
enterprises. It is relevant to mention that thanks to its high level of abstraction, the model for
virtual enterprises that we introduced in Section 3 captures all the six categories of virtual
enterprises discussed above.

The category of virtual enterprise that deserves additional discussion is the virtual brokerage.
We argue that among the six categories, the virtual brokerage is the most general and

TAPAS D5

36

challenging as it suggests dynamic creation of virtual enterprises. Dynamic virtual
enterprises are an emerging category of virtual enterprises [15, 16]. As one can guess,
dynamic creation of virtual enterprises implies dynamic negotiation of business contracts,
and dynamic creation of executable contracts (see Section 4.2). Although these concepts
sound exiting and promising for enhancing the architecture of our project, we decided to
leave out of our current research interest. We might have an interest on them in the future
when we consider that static negotiation and creation of virtual enterprises is well-
understood.

7.3 Contract Representation, Monitoring and enforcement

In this report (see Section 4) we use finite state machines as a formal notation for describing
business contracts. We are aware that FSMs are just a promising alternative. Other
researchers are experimenting with different approaches.

Monitoring and controlling electronic transactions is addressed by Minsky et al in a number
of papers on Law Governed Interaction (LGI) [17]. LGI is an infrastructure that allows
members of a group to interact using agents, where agents are entities that interact with each
other. A policy in LGI is defined as four-tuple: (M,g,CS,L) where: M is the set of messages
regulated by this policy; g is an open and heterogeneous set of agents that exchange
messages belonging to M; CS is a mutable set of control sates, one (CSx) for every member
(x) of group g; L is an enforced set of rules that regulate the exchange of messages between
members of g.

Law enforcement is achieved as follows: the law L is enforced by a set of trusted entities
called controllers that mediate the exchange of messages (M) between members of group g.
For every active member x in g, there is a controller Cx placed between x and the
communication medium. Every controller carries the law L. The controller Cx assigned to x
computes the ruling of L for every event at x, and the ruling is carried out locally. Controllers
act similarly to our Contract Enforcer (the FSM), which enforces the agreed contract, and
regulates interactions between the parties.

 Another work of relevance to contract monitoring and enforcement is the Ponder Policy
Specification Language [18]. Ponder is an object-oriented declarative language for
specifying management and security policies for distributed systems. In other words, Ponder
can specify, monitor and enforce what actions (operations on objects) are permitted within a
system, who can invoke the actions and under which conditions. Ponder comes with a toolkit
for editing, compiling and managing policies, that can be downloaded from its Web page at
the Department of Computer Science of the Imperial College in London. As mentioned
above, ponder was designed to govern actions executed within a system, it is not clear to us
whether its semantic is descriptive enough to regulate tight interactions between two or more
independent systems, namely, between the members of a virtual enterprise.

7.2 Trust, trust models and RBAC

Section 5 of this document presented the notions of trust, trust models and the security
principles required by the TAPAS RBAC architectural model. We are optimistic that the
RBAC model architecture developed in OASIS [19, 20] is a promising approach to this

 TAPAS D5

37

requirement. OASIS, with its notions of roles, sessions, its role principals, together with its
assigned role-players seems to fit well with the principles of the TAPAS security architecture
presented herein. Moreover, OASIS with its extended notions of appointments, for
delegation of role-playing, and of multiple, mutually aware domains for mobile roles, re-
located and still able to communicate without confusion, is entirely relevant to TAPAS. Such
notions of mobility and multiple communication domains are subjects of future research in
TAPAS, just as are the engineering model of OASIS and its engineering principles for
TAPAS x-contracts and the enterprises within Virtual enterprises (VEs).

References

[1] TAPAS project, Annex 1- Description of Work

[2] D. Lamanna, J. Skene and W. Emmerich, “Specification language for Service Level
Agreements”, TAPAS Deliverable, D2, March 2003.

[3] Giovanna Ferrar and Giorgia Lodi, “TAPAS Architecture: QoS Enabled Application
Servers”, TAPAS Deliverable, D7, March 2003.

[4] Carlos Molina-Jimenez, Santosh Shrivastava, Ellis Solaiman and John Warne, “Contract
Representation for Run-time Monitoring and Enforcement”, Report, School of Computing
Science, University of Newcastle Upon Tyne, Jan 2003. (Also, in the Appendix, this report)

[5] Gerard J. Holzmann. “Design and Validation of Computer Protocols”, Prentice Hall,
1991.

[6] J. C. Laprie (Editor), Dependability: Basic Concepts and Terminology, Dependable
Computing and Fault-Tolerant Systems, Vol. 5, Springer-Verlag/Wien, ISBN 3 211 82296 8.

[7] T. Grandison and M. Sloman, “A survey of trust in Internet applications”, IEEE
Communications Surveys, Fourth Quarter 2000,

[8] E. Gerck, Towards Real-World Models of Trust: Reliance on Received Information,
published on 23rd June 1998 in the mcg-talk list server.

[9] Paul D Ezhilchelvan and Santosh K Shrivastava, “Systematic Development of a Family
of Fair Exchange Protocols”, Report, School of Computing Science, University of Newcastle
Upon Tyne, June 2002. (Also, in the Appendix, this report).

[10] Nicola Mezzetti, “Modelling Trust in Collaborative Environments”, Dept. of Computer
Science, University of Bologna, Internal publication, Feb 2003. (Also, in the Appendix, this
report).

[11] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli, “Proposed
NIST standard for Role-Based Access Control”, ACM transactions on Information and
System Security, Vol. 4, No. 3, Aug. 2001.

[12] IETF RFC24 document series

[13] N. Cook, S.K. Shrivastava, and S.M. Wheater, "Distributed Object Middleware to
Support Dependable Information Sharing between Organisations", Proc. IEEE Int. Conf. on

TAPAS D5

38

Dependable Syst. and Networks (DSN-2002), Bethesda USA, June 2002. (Also, extended
version in the Appendix, this report).

[14] Janice Burn, Peter Marshall and Martyn Wild, “Doing Business on the Internet”, Edited
by Fay Sudweeks and Celia T. Romm, Chapter 3, Springer, 1999.

[15] Vaggeis Ouzounis and Volker Tschammer, “Towards Dynamic Virtual Enterprises”,
Towards the E-society: The First IFIP Conference on E-commerce, E-Business, E-
Government (I3E 2001), Octover 3-5, 2001, Zurich, Switzerland, Kluwer Academic
Publisher.

[16] Ricardo J. Rabelo and Rolando V. Vallejos, “A Semi-Automated Brokerage for a
Virtual Organization of Mould and Die Industries in Brazil”, Towards the E-society: The
First IFIP Conference on E-commerce, E-Business, E-Government (I3E 2001), Octover 3-5,
2001, Zurich, Switzerland, Kluwer Academic Publisher.

 [17] Naftaly H. Minsky, Victoria Ungureanu, “Law-Governed Interaction: A Coordination
and Control Mechanism for Heterogeneous Distributed Systems”. ACM Press, New York,
NY, USA, TOSEM 9(3): 273-305, 2000.

[18] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder Policy Specification
Language”, in Proc. Int. Workshop on Policies for Distributed Systems and Networks
(POLICY), Bristol, UK, Springer-Verlag LNCS 1995, Jan. 2001.

[19] Jean bacon, Ken Moody and Walt Yao, “Access Control and Trust in the use of Widely
Distributed Services”, IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware 2001), November 2001, Heidelberg,, Lecture Notes in Computer Science.
VOL. 2218, pp. 300-315.

[20] W. Yao, K. Moody and J. Bacon, “A Model of OASIS Role-Based Access Control and
its Support for Active Security”, ACM Trans. On Information and System Security, 5, 4,
November 2002.

 TAPAS D5

39

Appendix

