
 1

Contract Representation for Run-time Monitoring and
Enforcement

E-mails:

Carlos Molina-Jimenez <Carlos.Molina@ncl.ac.uk>
Santosh Shrivastava <Santosh.Shrivastava@ncl.ac.uk>
Ellis Solaiman <Ellis.Solaiman@ncl.ac.uk>
John Warne <J.P.Warne@ncl.ac.uk>

School of Computing Science, University of Newcastle upon Tyne,
Newcastle upon Tyne, NE1 7RU, England

Abstract
Converting a conventional contract into an electronic equivalent that can be executed
and enforced by computers is a challenging task. The difficulties are caused by the
ambiguities that the original human-oriented text is likely to contain. The conversion
process involves the conversion of the original text into mathematical notation. In this
paper we discuss how standard conventional contracts can be described by means of
Finite State Machines (FSMs). This mathematical description helps eliminate
ambiguities from the original text before the contract is coded into a computer
program. The paper describes how to map the rights and obligations extracted from
the clauses of the contract into the states, transition and output functions, and input
and output symbols of a FSM. The FSM guarantees that the clauses stipulated in the
contract are observed when the program that implements the contract is executed.
Also, the paper suggests a middleware service required for the enactment of the
contract represented as a FSM.

Keywords: Contract, electronic contract, finite state machine, contract representation,
contract monitoring, contract enforcement, contract implementation.

 2

Contract Representation for Run-time Monitoring and
Enforcement

Carlos Molina-Jimenez, Santosh Shrivastava, Ellis Solaiman and John Warne

School of Computing Science, University of Newcastle upon Tyne,
Newcastle upon Tyne, NE1 7RU, England

Abstract
Converting a conventional contract into an electronic equivalent that can be
executed and enforced by computers is a challenging task. The difficulties are
caused by the ambiguities that the original human-oriented text is likely to
contain. The conversion process involves the conversion of the original text into
mathematical notation. In this paper we discuss how standard conventional
contracts can be described by means of Finite State Machines (FSMs). This
mathematical description helps eliminate ambiguities from the original text
before the contract is coded into a computer program. The paper describes how
to map the rights and obligations extracted from the clauses of the contract into
the states, transition and output functions, and input and output symbols of a
FSM. The FSM guarantees that the clauses stipulated in the contract are
observed when the program that implements the contract is executed. Also, the
paper suggests a middleware service required for the enactment of the contract
represented as a FSM.

1 Introduction
The concept and the use of contracts are not new to today’s society. Legal contracts
can be traced back to ancient times [8]. There are records that indicate that legal
contracts were used by the Mesopotamians circa 2300-428 BC for selling and
purchasing slaves, land and crops. Also, there is evidence that shows that the
Mesopotamians knew how to write and sign legal contracts for hiring services such as
houses and workers; and for establishing partnerships between two or more land-
owners. Since contracts have been used for a long time, we humans know how to
write (in English for example), interpret and execute a contract. We can be sure that
managers of the contractual parties will know how to read the English text and make
sense of it. Once the contracting parties have agreed on the clauses to include in a
contract, the composition of the English text of the contract does not represent a great
challenge. Consequently, contracts were not a subject of research interest until the
early 90s, when it first appeared that the Internet might offer a viable alternative for
conducting business. As in the conventional world, contracts are crucial for
conducting commercial transactions in the electronic world. Without a contract, the
legal position of two or more enterprises trading over the Internet is uncertain. Even a
transaction as simple as buying an electronic book requires a contract. While contracts
in the conventional world are well understood, contracts in the electronic world are
not yet well understood.

To prevent confusion with the terminology we use in this paper, it is probably
advisable to begin by agreeing on the following terms: in this paper we use the term

 3

contract to refer to a conventional contract written in a natural language. On the other
hand, we use the term e-contract to refer to computer-oriented contracts, that is, to
contracts that are interpreted and executed by computer. Although everybody agrees
that without e-contracts e-business will never reach its full potential, e-contract related
technology is not yet mature. For example, we do not know how a standard contract
written by humans and for humans, can be converted into an e-contract. That is, into a
computer program that, when executed, enforces what is stipulated in the English text
contract. We have been examining contracts and attempting to convert them into their
equivalent e-contracts. Not surprisingly, we have found that the conversion of
contracts into e-contracts is not a trivial process.

We have found that Finite State Machines (FSMs) are quite adequate for modelling e-
contracts. One aim of this paper is to discuss how conventional business contracts
written in English can be described, by means of FSMs. The advantage of having a
contract expressed by FSMs or other mathematical model is that the model can be
checked for correctness properties first. Once the FSM model is free of ambiguities
that are likely to exist in the original contract, we can proceed with writing the
additional code needed to implement the contract. When executed, this program (or
set of programs) will enact the contract, monitor its behaviour and enforce its clauses.
The second aim of this paper is to describe the run-time infrastructure for monitoring
and enforcement of e-contracts.

The scenario of the problem we are investigating can be described as follows: given a
standard contract written in English, which for example can be downloaded from the
Internet or from another source, how can the text be converted it into a FSM. This
means that we are not investigating how to negotiate contracts or e-contracts over the
Internet; we assume that the contract already exists. Our job is to express it in FSMs,
possibly, after editing the original text to correct ambiguities.

2 Contracts and e-contracts
A contract can be defined as a paper document that stipulates that the signatories (two
or more) agree to observe the clauses stipulated in the document. Each entry in the
document is called a term or a clause. Moreover, it is common practice to specify
what role (manager, accountant, supervisor, etc.) each of the signatories (Alice, Bob,
Doug, etc.) play within their respective enterprises.

An e-contract is an electronic version of a conventional contract. It is an electronic
document that stipulates that the signing entities (two or more) agree to observe
clauses stipulated in the document.

As can be seen from the definitions of conventional and electronic contracts, the main
idea behind conventional and electronic contracts is the same: the two of them
regulate the interaction between two or more trading parties. However, in spite of the
close similarities, there is a crucial difference between the two kinds of contract. A
conventional contract is human oriented, whereas an e-contract is computer-oriented.
Consequently, the former tolerates ambiguities, the latter does not.

 4

2.1 Rights and obligations
The clauses of a contract stipulate how the signing parties are expected to behave. In
other words, they list the rights and obligations of each signing party. It should be
possible to precisely extract a set of rights and a set of obligations from the clauses of
a given contract. If this is true, an e-contract with two contracting parties can be
represented as shown in Fig.1.

Fig. 1. Main elements of an e-contract.

Note that for the sake of simplicity, in this paper we discuss examples of contracts
with only two contracting parties. However, all our concepts, models, and examples
can be generalised to 2≥n parties as long as n is finite.

Let us assume that in Fig.1 E1 is managed by Alice and that E1 is interested in
purchasing some items from E2. Similarly, Bob is the manager of E2 which is an
enterprise interested in supplying items to E1. The contract shown in this figure has
been signed by Alice as the manager of enterprise E1 after agreeing with Bob that she
will observe m rights, },...,,{ 11

2
1

1
ME
m

MEME RRRR = and p obligations,
},...,,{ 11

2
1

1
ME
p

MEME OOOO = . On the other hand, Bob signed that he, as the manager of
enterprise E2, would observe n rights, },...,,{ 22

2
2

1
ME
n

MEME RRRR = and q obligations,
},...,,{ 22

2
2

1
ME
q

MEME OOOO = .

In this discussion, a right can be defined as an authorization to do something. Because
it is only an authorization, a right may or may not be exercised. In the context of the
execution of an e-contract, a right is an authorization to perform an operation that will

 },...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
q

MEMEME
p

MEME OOOOOOO =

 },...,,,,...,,{ 22
2

2
1

11
2

1
1

ME
n

MEMEME
m

MEME RRRRRRR =

AGREEMENT

E1,E2—Enterprises, Ri—Right, Oi—Obligation
ME1—Manager of E1, ME2—Manager of E2

E-signatures

Manager E1 Manager E2
Alice Bob

 5

affect the behaviour of the execution of the e-contract. For example, the signed e-
contract of Fig.1 can stipulate that Alice, as a manager of E1, has the right to send an
offer to sell to Bob, the manager of E2. Because this is a right, it is up to Alice to send
or not to send the offer to Bob; Bob will not be disappointed if he does not receive the
offer.

 Similarly, an obligation can be defined as a duty that must be performed. In the
context of the execution of an e-contract, an obligation is a duty to perform an
operation that will affect the behaviour of the execution of the e-contract. A failure to
perform such a duty means a breach of the e-contract. For example, the text of the e-
contract shown in Fig.1 might stipulate that upon receiving an offer to sell from Alice,
Bob has the obligation to reply to her with an OfferAccepted or OfferRejected
message.

Note that the execution of a right or an obligation such as SendOfferAccepted or
SendOfferRejected will, at a lower level of abstraction, demand access to one or more
objects such as files, databases and printers. A question that arises here is whether
Alice and Bob have the right to access the objects affected by their operations. This is
an issue of authentication and can be left out of the discussion while we talk at the
level of rights and obligations. At this level we can assume that the persons that
execute the e-contract are granted permission to access the objects they need. Our
view is that at object level, rights to access resources can be implemented on top of a
Role-Based Access Control like the standard RBAC[7].

Note that in our e-contract each right and obligation is given a name; naming right
and obligations is crucial in our understanding of e-contracts. Being able to name
each right and obligation individually means that we can identify, monitor and
enforce each of them at run-time, that is, when the contract is enacted.

3 E-contracts, communication protocols and FSMs
From books on the theory of Computer Science (see for example [12]) we know that,
formally, a finite state machine M is defined as the quintuple],,,,[λδZIS , where

},...,,{ 21 msssS = , },...,,{ 21 niiiI = and },...,,{ 21 pzzzZ = are finite nonempty sets of
states, input symbols and output symbols, respectively. SIS →×:δ is the transition
function and ZIS →×:λ is the output function.

Informally, M describes an abstract system that stays in a given state until it receives
an external stimulus. When such stimulus is received, the system reacts by doing
something (for example, sending an output signal) and then moves to a different state.
Note that do something might mean do nothing in some circumstances and that the
new state is not necessarily different from the previous. The behaviour of this abstract
system is deterministic. The quintuple],,,,[λδZIS unambiguously defines what to
do and where to go next.

Because of their high level of abstraction, FSMs are used to describe and model a
great variety of systems. In particular, the computer science community has gained a
great deal of experience in the use of FSMs for describing communication protocols,
and built several tools for validating such protocols. For example, Spin [9] is a well
known protocol validator among the academic community.

 6

 We have introduced communication protocols into the discussion about e-contracts
for a valid reason: we strongly argue that from the point of view of the interaction and
synchronisation between the parties involved, e-contracts are equivalent to
communication protocols. We claim that e-contracts, as communication protocols are,
can be precisely abstracted by FSMs. The advantage of looking at contracts as FSMs
is that we can put into practice all the existing machinery that was originally
developed for studying communication protocols. For instance, we can resort to Spin
to validate an e-contract before converting it into the actual computer program that
will enact it. The goal of a validation process is to analyze what is known as the
correctness properties of the system. In other words, the essence of the validation is to
discover, at an early stage, whether the execution of an e-contract takes the
contracting parties into unacceptable situations. Among other things, validating the
FSM model of an e-contract should reveal the existence of states (conditions in the e-
contract) that are not reachable, that is, states for which there is no path from the
initial state. If one of these unreachable states represents the receipt of the goods the
situation would be unacceptable and the e-contract would need to be re-written. In the
same order, the validator should show that at some point, the two contracting parties
reach a final state (contract deal for example) instead of being left in a transient state
for ever. To mention another example, the validation should reveal whether the e-
contract allows purchasers to receive goods before paying for them.

A question that naturally arises at this point is how the rights and obligations of an e-
contract can be expressed in a FSM.

4 Description of e-contracts
In this section we will discuss how the components of an e-contract can be mapped
into the components of a FSM.

4.1 Mapping conditions, rights and obligations into a FSM
At the level of rights and obligations an e-contract is often more easily understood as
a set of FSMs, one for each contracting party. So, from our example in Fig.1, we have
one FSM for the purchaser and one FSM for the supplier, FSMP, FSMS respectively.

The physical location of each FSM is irrelevant to the functionality of the contract and
is decided at the time of implementation. For the moment let us assume that FSMP is
located within Alice’s enterprise and FSMS is located within Bob’s enterprise. To
enact the e-contract these two FSMs must share a common communication channel to
interact with each other, that is, the output of FSMP is somehow connected to the input
of FSMs and vice versa. We will now discuss how the rights and obligations
stipulated in an e-contract can be mapped into the FSMs.

It is easy to reason about the operations of an e-contract, with the following general
syntax in mind:

if event1 & conditionq = true
perform operation1 and switch to state1

 7

else if event2 & conditionq = true
perform operation2 and switch to state2
… … …
else if eventm & conditionq= true
perform operationm and switch to statem

This syntax expresses the idea that, at some point an e-contract can be at any of n
possible conditions (condition1, condition2,…,conditionn). If the e-contract is in a
given conditionq (for example, WatingForOffer), there is a finite and well defined set
of events (event1, event2 , …,eventm) that can affect the future behaviour of the
contract. The occurrence of eventi determines what objects (variables, files, database,
etc.) within the system change their values, that is, the event determines to which new
condition the systems switches. Similarly, there is a finite and well defined set of
operations (operation1 , operation2 ,…, operationm) that can be executed when the
system is in conditionq. The eventi determines the operation to be executed.

Bearing in mind the discussion presented in Section 3, we argue that in terms of FSMs,
the set of conditions of the general syntax presented above, can be mapped into the set
S of states of a FSM. Similarly, the set of events can be mapped into the set I of input
symbols of the FSM. In the same order, the set of operations can be mapped into the
set Z of output symbols of the FSM. Finally, we can map the set of switches to the
next condition into the transitional function δ. It is important to bear in mind that the
operation donothing is a valid operation. In this discussion we represent it with the
symbol ε.

Thus, in terms of FSMs, we can express the above syntax as shown in Fig.2, where e
and o stand for event and operation, respectively.

state1

stateq state2

statem

e 1/o
1

e2/o2

e
m /o

m

…

state1

stateq state2

statem

e 1/o
1

e2/o2

e
m /o

m

…

Fig. 2. Mapping of events, conditions and operations of an e-contract
into a FSM state.

4.2 Description of a simple e-contract using FSMs
To show what rights and obligations look like, we will discuss a very simple example
of a e-contract for offering and purchasing goods remotely, for example, over the
Internet. As an attentive reader will notice, the e-contract has serious ambiguities; this

 8

will be discussed in Section 5.2. The e-contract which is signed by a purchaser and a
supplier contain, among other data, the following clauses:

1. Offering
1.1 The supplier may use his discretion to send offers to the purchaser.
1.2 The purchaser is entitled to accept or reject the offer, but he shall notify his

decision to the supplier.
2. Commencement and completion
2.1 The contract shall start immediately upon signature.
2.2 The purchaser and the supplier shall terminate the e-contract immediately after

reaching a deal for buying an item.
From this English text contract clause we can extract the sets of rights and obligations
for the purchaser and the supplier and express them in terms of operations for FSMs.

Purchaser’s rights:

PR1 : SendAccepted -- right to accept offers.
PR2 : SendRejected -- right to reject offers.

Purchaser’s obligations:

PO1 : StartEcontract -- obligation to start the e-contract.
PO2 : SendAccepted or SendRejected -- obligation to reply to offers.
PO3 : EndEcontract -- obligation to terminate the e-contract.

Supplier’s rights:

sR1 : SendOffer -- right to send offers.

Supplier’s obligations:

SO1 : StartEcontract -- obligation to start the e-contract.
SO2 : EndEcontract -- obligation to terminate the e-contract.

To be consistent with the notation in Fig.1 we now specify the sets of rights and
obligations: },,{ 121

SPP RRRR = and },,,,{ 21321
SSPPP OOOOOO = . We show how the sets

R and O are mapped into FSMs in Fig. 3.

 9

 Fig. 3. FSM Representation of an ambiguous e-contract for the
 purchase of goods.

As can be appreciated from Fig.3, we have used, two FSMs to precisely describe the
English text contract of our example. However, as they are, the two FSMs of Fig. 3
only describe the behaviour of the two contracting parties, they do not monitor or
enforce it. As you can see, the elements of the sets of rights and obligations are also
shown in the figure.

5 Monitoring and enforcement of e-contracts
During the execution of an e-contract rights and obligations are triggered by local and
remote events. In this section we will show how two FSMs trigger rights and
obligations on each other.

5.1 Invocation of rights and obligations
To reason about how the contractual rights and obligations can be monitored and
enforced by a FSM, it is useful to look at the rights and obligations a contracting
 party has at a given state of the execution of the e-contract. In terms of FSMs, this is
equivalent to looking at the set of operations that can be executed when the FSM of
the contractual party is at stateq. It is useful to classify this set into two subsets: the
subset of operations the owner of the FSM has the right to perform and the subset of
operations that person has the obligation to perform, },...,,{ 21 mooo and

},...,,{ 21 pmm ooo ++ , respectively.

To illustrate how the rights and obligations are triggered we will examine Fig.4. This
figure shows a snapshot of the two FSMs that model an e-contract for the purchase
and supply of e-goods.

OfferRcvd
 ε

 OfferAccepted
PO2 SendAccepted, PO3

EndEcontract

OfferEdited

 sR1
SendOffer

OfferAcceptedRcvd

 SO2 EndEcontract

Purchaser Supplier

 OfferRejected
 PO2

 SendRejected OfferRejectedRcvd
 ε

Wating
for offer

Waiting
for results

 E-contractSigned
SO1
 StartEcontract

 EcontractSigned
PO1 StartEcontract

Editing
 offer

Deal

Deciding
to buy

Deal

 10

Supplier

supplier’s rights

purchaser’s rights

purchaser’s obligations

statem+1

em+1/om+1

Purchaser

states

statez ez/oz

ei/ε

supplier’s obligations

state1

stateq state2

statem

e 1/o
1

e2/o2

e
m /o

m

…

statepstatem+2 …

em+2/om+2
ep/op

state1

e1/o1

Supplier

supplier’s rights

purchaser’s rights

purchaser’s obligations

statem+1

em+1/om+1

Purchaser

states

statez ez/oz

ei/ε

supplier’s obligations

state1

stateq state2

statem

e 1/o
1

e2/o2

e
m /o

m

…

statepstatem+2 …

em+2/om+2
ep/op

state1

e1/o1

supplier’s rights

purchaser’s rights

purchaser’s obligations

statem+1

em+1/om+1

Purchaser

states

statez ez/oz

ei/ε

supplier’s obligations

state1

stateq state2

statem

e 1/o
1

e2/o2

e
m /o

m

…

statepstatem+2 …

em+2/om+2
ep/op

state1

e1/o1

purchaser’s rights

purchaser’s obligations

statem+1

em+1/om+1

Purchaser

states

statez ez/oz

ei/ε

supplier’s obligations

state1

stateq state2

statem

e 1/o
1

e2/o2

e
m /o

m

…

statepstatem+2 …

em+2/om+2
ep/op

state1

e1/o1

Fig. 4. Interaction of two FSMs by means of rights and obligations.

Let us say, the execution of the e-contract at the purchaser’s side is at state stateq.
As it can be seen from the figure, the rights and obligations the purchaser has when
his FSM is at stateq can be mapped into the sets },...,,{ 21 mooo and },...,,{ 21 pmm ooo ++ ,
respectively.
Executing an operation from the subset },...,,{ 21 mooo means exercising a right given
by the e-contract. Since each operation io is paired to an event ie , the operation io
can be executed only after the occurrence of ie . How does event ie occur?

Event ie can be triggered internally within the purchaser’s enterprise or externally,
say for example, within the supplier’s enterprise. Since the execution of operation io
is optional, the event of ie might be deliberately triggered by the purchaser (for
example, I wish to send a purchase order). Also, it can be the result of an unavoidable
situation within the purchaser’s enterprise (for example, the mainframe computer is
non-functional) or it can be triggered by a message received from the supplier (for
example, would you like to buy this item?).

Executing an operation imo + from subset },...,,{ 21 pmm ooo ++ means complying with the
contractual obligations the purchaser has when his FSM is at stateq. As with the
rightful operations, the obligatory operations are paired to events which are triggered
internally, or externally.

It is important to understand that exercising a right at one side of the contract might or
might not have an effect at the other side. This depends on what the text of the e-
contract stipulates. The execution of operation io at the purchaser’s side might trigger
a right, an obligation, or nothing at the supplier’s side. By nothing we mean that the
supplier’s is not notified about the execution of the operation io at the purchaser’s
side.

 11

 Similarly, the execution of an obligatory operation imo + from the subset
},...,,{ 21 pmm ooo ++ might trigger a right, an obligation or nothing at the supplier’s side.

The dashed line pointing from the pair 11 / oe at the supplier’s side to the pair pp oe / at
the purchaser’s side implies that at states the supplier has the right to execute the
operation 1o . The English text of the contract stipulates that the purchaser (being at
stateq) has the obligation to execute operation po as a response.
 Similarly, the dashed line pointing from mm oe / to zz oe / shows that at stateq the
purchaser has the right to execute the operation mo . As a response to this operation,
the supplier has the obligation to execute the operation zo . The dashed line from

11 / oe to ε/1e shows that the purchaser’s has the right to execute the operation 1o .
However, the execution of such operation demands nothing at the supplier’s side; the
supplier is breaching the e-contract.

To show how these ideas can be used in practice, we will apply them now to the
example of e-contract discussed in Section 4.2.

5.2 Description, monitoring and enforcement of an e-contract
 In practice, it is likely that contracts will be written by lawyers and then passed on to
technical people to convert the original English text into a computer program that will
monitor and enforce what the contract stipulates.

From our own experience we have learnt that the first difficulty the technical person
faces in this e-situation is the ambiguities that the English text contract is likely to
have. The standard contract discussed in this section is not an exception. Although it
contains only eight lines and looks correct at first glance, it has a serious ambiguity.
The contract text does not specify the time for sending the offer. Neither does it
specify the time for sending the notification about rejecting or accepting the offer.

These two omissions render the English text contract difficult to convert into a useful
e-contract. It is true that the e-contract can still be implemented and enacted but the
purchaser’s FSM will hang silently until the supplier decides to send an offer. If for
some reason the supplier forgets to send his offer, the two FSMs will hang silently
forever or until the purchaser or the supplier use another channel (a telephone, for
example) to investigate the problem. Telephone calls are intensively used for
clarifying situations in conventional business, however, in e-contracts they are not
acceptable because they are exactly what e-contracts are meant to prevent.

 To be consistent with our arguments we show the English text of the example
discussed in Section 4.2 after editing it to correct the ambiguities it had.

1. Offer
 1.1 The supplier may use his discretion to send offers to the purchaser.
 1.2 If no offer is sent within seven days after the signature of the e- contract, the e-
 contract shall be terminated.

 12

 1.3 The purchaser is entitled to accept or reject the offer, but he shall notify his
 decision to the supplier within five days after the receipt of the offer.

2. Breaches, reminders and disputes

 2.1 If the purchaser fails to reply to the purchaser’s offer within two days, the
 supplier shall terminate the contract. This will be regarded as an abnormal
 termination of the e- contract.

2.2 An abnormal termination of the contract entitles the purchaser and the
 supplier to call each other to resolve disputes.

3. Commencement and completion
 3.1 The contract shall start immediately after signing it.
 3.2 The purchaser and the supplier shall terminate the e-contract immediately
 after reaching a deal for buying a good.

We will not extract the set of rights and obligations from the text of the contract
because, apart from minor changes, they look the same as the ones listed in Section
4.2. We will show only the FSMs that describe, monitor and enforce the e-contract.

Fig. 5. FSM Representation of an unambiguous e-contract for the
purchase of goods.

We have to admit that though the FSM model we present for this rather simple e-
contract looks correct at first glance, we do not guarantee it is completely free from
inconsistencies. We argue that it is too adventurous to claim that the electronic
representation of a contract is free of inconsistencies before the model that describes it
is validated using formal tools such as the Spin validator.

What can be done if the validator discovers that the model of an e-contract contains
some inconsistencies? We have found out that this situation is rather common with

Deciding
to buy

OfferRcvd
 ε

 OfferAccepted
SendAccepted, EndEcontract

EcontractSigned
 StartEcontract

Editing
 offer

OfferEdited
 SendOffer

OfferAcceptedRcvd
 EndEcontract

 E-contractSigned
 StartEcontract

Purchaser Supplier

OfferRejected
SendRejected

OfferRejectedRcvd
 ε

End

7dayTimeOut
 ε

Wating
for offer

Deal Dispute Deal

2dayTimeOut
 ε

Waiting
for results

 13

existing standard contracts. We strongly argue that the existence of inconsistencies in
standard English text contract is going to be the normal rather than exceptional.

Because of this, we believe that, except for the fairly well standardized contracts (see
Section 5.3) the conversion of a contract into an e-contract is an interactive process.
The interaction involves the lawyer and the technical person in charge for the
implementation of the e-contract:

1. The lawyer edits the English text contract.
2. The technical person converts the contract into a formal model and validates it.
3. If inconsistencies are discovered in the contract, the technical person goes

back to the lawyer (point 1) to request him to correct the English text, taking
care that the main purpose of the contract is not changed.

4. If the validator indicates that the model is free from inconsistencies and the
lawyer is satisfied with the last version of the English text contract, the
technical person proceeds to convert the model into the actual program that
will enact the e-contract.

5. Once the English text contract and the e-contract are ready, the contracting
parties can sign and enact it.

In Appendix A, we present an example of a contract that we have converted from
English text into FSMs. It is a contract for the purchase and supply of e-goods and is
inspired in an example for the purchase and supply of goods that appeared in [6]. We
changed the original text to make it more illustrative in terms of essential e-contract
interactions. Most importantly, we changed the original text to eliminate several
ambiguities that prevented the contract from being described with FSMs.

5.3 Ready to fill in, sign and enact e-contracts

We are aware that the manual conversion process discussed in section 5.2 from the
English text contract to the electronic contract is not the best solution.
The ideal scenario would be one where an English text contract can be converted by a
lawyer into an e-contract that monitors and enforces an agreement, without the
intervention of a “technical person”. Yet this is currently unrealistic, if this were
possible then we would not need programming for any applications. Automation with
current technology however, can be achieved for standard contracts.

In the business world, there is a family of applications where the contracting parties
resort to fairly standardized contract templates which are offered ready to be filled in
and signed. Examples of these templates are tenant agreements. These contract
templates can be bought at the stationery. They are offered on the take-it-or-leave-it
basis since the clauses of the contract are not negotiable. The contracting parties can
negotiate the data to be written in the blanks, but nothing else.

We believe that for these family of applications it is possible to offer (in return for a
fee) ready to fill in and sign e-contracts. We can think of a Web place where standard

 14

English text templates are stored together with their inconsistencies-free e-contracts.
The contracting parties can then remotely fill in the template that suit their
requirements, sign it, pay for the service and enact the e-contract.

The steps that would be required to enable this can be summarized as follows:

Defining Standard contracts
1. Lawyers compile and edit a number of standard contracts used frequently as
"standard" between certain entities.
2. The technical person converts each of the standard contracts into FSMs and
validates them.
3. If inconsistencies are discovered in a Standard Contract, the technical person
reviews the contract with the relevant lawyer, and the English text is corrected.
4. If the “Validator” indicates that the FSM representing the contract is free from
inconsistencies, and the lawyer is satisfied with the standard contract, the standard
contract is added to the standard contract data base with its FSM.

Agreement phase
1. The trading partners use a "contract editor" to access the data base and choose a
standard contract relevant to them.
2. They fill in the relevant data (deadlines, prices, etc.)
3. Once satisfied they both electronically sign the contact.

Enactment phase
1. Both parties take the Signed contract FSM and "plug it in" the contract enforcement
system.
2. The contract enforcer uses the FSM code to monitor and enforce the contract
agreements between the parties.

How an e-contract can be implemented is discussed in Section 6.

5.4 Who monitors and enforces?
One particularity of the FSMs shown in Fig.4 is that each FSM monitors and enforces
the rights and obligations of its owner. Thus the supplier’s FSM allows the supplier to
execute only the operations he has the right to execute and nothing else. Likewise, the
FSM enforces the supplier to execute the operations he has the obligation to execute.
The purchaser’s FSM works in a similar way. In other words, the rights and
obligations stipulated in the English text contract are monitored and enforced at both
sides. The advantage of implementing an e-contract by FSMs that enforce both right
and obligations at each side is that the receiver of a request to perform a local
operation knows that the requester has the right to request such operation, thus, the
receiver may perform the operation without checking the rights of the requester. This
approach for modeling e-contracts is just one possibility.

Another alternative for modeling an e-contract is to release the check of the rights of
the owner of the FSM at his side. In this paradigm, only the FSM of the receiver
checks that the requester is requesting operations he has the right to. For instance, we
can think of the purchaser of the Fig.4 being allowed to send any request to the

 15

supplier. Thus each operation invoked by the purchaser would reach the supplier’s
FSM. The advantage of this alternative is that each FSM has to check only obligations,
consequently the FSMs become simple.

6 Infrastructure support
Regardless of the details of the implementation, any software designed to implement
an e-contract will contain two main components: a contract enforcer and a
middleware service for information sharing.

The contract enforcer is a piece of software that guarantees that the rights and
obligations stipulated in the contract are monitored and enforced. An example of
obligation that can be enforced by this piece of software is send offer within three
days after signing the e-contract.

The middleware service is a layer of software that regulates the interaction between
two (or more) contracting parties who, despite mutual suspicion, wish to interact and
share information with each other. Thus the middleware provides generic services that
can be used to support arbitrarily complex interactions between contracting parties.
Among the services this middleware should provide are authentication and collection
of non-repudiable evidence of the actions performed by the contracting parties. An
example of evidence that can be collected is a non-repudiable record that an offer was
sent on a certain date.

In the architecture that we propose in this paper for implementing e-contracts, the
contract enforcer is implemented as a set of FSMs. As we discussed it in Sections 4.1
and 5.4, we suggest the use of one FSM for each contracting party.

For non-repudiable information sharing we suggest the use of a B2BObject
middleware [2] developed at Newcastle University. It is distributed object-based
middleware, implemented in Java that supports information sharing between parties
that do not necessarily trust each other. Once deployed, each party holds a local copy
of shared information (encapsulated in objects). Access to and update of this
information is subject to non-repudiable validation by each party.

Fig. 6 shows how an e-contract that involves a purchaser and a supplier is
implemented. As can be seen the rights and obligations of each contracting party are
described, monitored and enforced by the two FSMs. Consequently, these two FSMs
determine the behaviour of the e-contract.

The dashed line that goes from the supplier to the purchaser shows what happens
when the supplier sends an offer. When the offer is ready, the supplier invokes a send
operation, the supplier's FSM switches to its Waiting for response state and makes a
SendOffer call to the local copy of a shared B2BObject (that implements the
operation). The local B2BObj collects, and signs, evidence of the operation and
requests coordination of the proposed update to its state with the purchaser's B2BObj.
The purchaser's B2BObj verifies the evidence provided and makes an up-call to the
purchaser's FSM to validate the B2BObj operation. Upon receiving the up-call, the
purchaser's FSM switches to the Deciding to buy state. The dashed line from the

 16

purchaser's FSM to the supplier's FSM shows how the purchaser's response is
transmitted to the supplier. The B2BObjects middleware ensures that all operations
performed by the purchaser and the supplier are recorded and are non-repudiable. One
of the major advantages of B2BObjects is that it ensures this without the need of
involving trusted third parties.

Fig. 6. Architecture for implementing e-contracts.

7 Related work
Monitoring and controlling electronic transactions is addressed by Minsky et al in a
number of papers on Law Governed Interaction (LGI) [11]. LGI is an infrastructure
that allows members of a group to interact using agents, where agents are entities that
interact with each other. A policy in LGI is defined as four-tuple: (M,g,CS,L) where:
M is the set of messages regulated by this policy; g is an open and heterogeneous set
of agents that exchange messages belonging to M; CS is a mutable set of control
sates, one (CSx) for every member (x) of group g; L is an enforced set of rules that
regulate the exchange of messages between members of g.

Law enforcement as described in [14] is achieved as follows: the law L is enforced by
a set of trusted entities called controllers that mediate the exchange of messages (M)
between members of group g. For every active member x in g, there is a controller Cx
placed between x and the communication medium. Every controller carries the law L.

 Preparing
 offer

Waiting for
 response

OfferReady
 SendOffer

EcontractSigned
 ε

Waiting for
 payment

Purchaser Supplier

Purchaser’s copy
of B2Bobj

Supplier’s copy
of B2Bobj

B2Bobj

AcceptedRcvd
 ε

RejectedRcvd
 ε

Waiting for
 offer

Deciding to
 accept

EcontractSigned
 ε

Preparing
 payment

OfferRcvd
 ε

OfferRejected
SendRejected

OfferAccepted
SendAccepted

 17

The controller Cx assigned to x computes the ruling of L for every event at x, and the
ruling is carried out locally. Controllers act similarly to our Contract Enforcer (the
FSM), which enforces the agreed contract, and regulates interactions between the
parties.

Another work of relevance to contract monitoring and enforcement is the Ponder
Policy Specification Language [3]. Ponder is a language for specifying management
and security policies for distributed systems. Ponder can express authorization and
obligation policies as well as some basic descriptive policies through an associated
name service. But it is only a specification language and does not provide means for
monitoring or enforcing policies.

 The idea of monitoring and enforcement of policies specifically for e-contracts is
introduced in the works of Milosovic et al [6] [10] [15]. In Milocevic’s work, a
contract is built of four elements: agreement, consideration, capacity, and legal
purpose. These elements take the form of clauses that cover standard contract data. In
[15], “A possible sequence of contract operations” is proposed. These include the
“Establishment Phase” where the parties negotiate the terms of the contract and sign it,
and the “Performance Phase”, where the contract is monitored and enforced. The
proposal assumes in an implicit way the participation of third parties. In [6], the
authors pay particular attention to the benefits of using standard contracts, a concept
that is also important in our work. The B2B model they introduce has the following
key elements: Contract repository, Contract notary, Contract Monitor, and Contract
Enforcer. The Contract Monitor has the central component CMM (Contract Monitor
Manager), which receives policy statements of the form:

<policy> :: = <variable_declaration>
 when <condition>

<action>
must [not] occur where <condition>
otherwise <trigger_action>;

<action> :: = action(<action_name>, <actor>,
 <audience>,<time>,<body>)
<trigger_action> ::= trigger_action(<action_name>,
 <audience>,<body>)

Upon receiving a policy statement, it is analysed by the CMM, and the CE is signalled
if a violation is detected.

The main difference between the above formulation of policy and our design is that
using B2BObjects, our implementation does not require a trusted third party for
monitoring and enforcing. Monitoring and enforcing is done by the parties to the
contract themselves. Therefore the “overall” e-contract in our case needs to be split
between the parties depending on what each of them monitors and enforces.

Research conducted at the Cambridge Computer Laboratory [1], discusses contract
representation and enforcement using occurrences. An occurrence is basically an
event. Contracts are stored in an occurrence store. Workflow occurrences are also
stored there, and a collection of stored queries is maintained. Each query describes the
occurrences promised and prohibited under the provisions of the contracts and
policies of an organisation. [13] also proposes a mechanism that discovers
inconsistencies between business contracts and organisational policies.

 18

Work that considers state representation of contracts is introduced in [4] and [5]. In [5]
an informal schematic notation for e-contracts is introduced. It can be used to
summarize the structure of agreements as collections of interrelated obligations.
However formal semantics had not been developed for the notation. In [4], the authors
present a simple architecture for an e-market where a controller agent is used to
undertake the resolution of possible disputes between parties to an agreement. The
controller may hold a representation of a contract in a model language, which
implicitly defines state spaces. Also the representation is accessible to each party so
that each party knows what it is supposed to do, and what to expect from its counter
party.
The controller in this architecture acts as a judge, using information from the contract,
and other sources such as advisors for the resolution of disputes. This is a different
line of research to ours, as we concentrate on using Finite State Machines to explicitly
represent contracts, and enforce them. Any disputes that arise in our case are not
currently part of our research.

8 Conclusions and recommendations
Converting an existing standard contract written in English or other human languages
into an e-contract is a challenging yet achievable task. The result of the task should be
a computer program that, when executed, performs, monitors and enforces the
business operations stipulated in the original human oriented document. The
ambiguities that are normally present in human oriented contracts make the
conversion a difficult process aimed at correcting such ambiguities without changing
the main goal of the original text contract. To find ambiguities in the text contract it is
strongly advisable to convert it into formal notation.

 In this paper, we have shown how finite state machines can be used as a formal
notation when it comes to converting text contracts into e-contracts. Finite state
machines are scientifically well established, and come with a large body of theory that
can be applied to e-contracts. We have found that a finite state machine is a simple yet
expressive model for describing, validating and implementing e-contracts.

We have shown how the rights and obligations stipulated in a text contract can be
precisely described with a set of finite state machines. From our own experience, we
have learnt that a finite state machine model is a useful tool for finding ambiguities in
text contracts. Most importantly, we have found that a set of finite state machines can
be used to actually implement an e-contract. The FSM would monitor and enforce the
rights and obligations of each contracting party, when the e-contract is enacted.

In our ongoing work we are in the process of implementing e-contracts on top of the
B2BObjects middleware service. B2BObjects is used to regulate the interaction
between the contracting parties and to collect evidence of each of their actions. Using
B2BObjects we can show that e-contracts can be monitored and enforced without
requiring the involvement of independent trusted third parties.

We are aware that some contract clauses are easier to express in terms of prohibitions
rather than rights and obligations. However, we recommend that contracts should be
described only in terms of right and obligations and resist the temptation of including

 19

the concept of prohibitions simply because it is easier to describe what must be done
rather than what cannot be done. We believe that the concepts of rights and
obligations are expressive enough to describe whatever the contracting parties wish to
stipulate in their contracts.

9 References
[1] Alan S. Abrahams and Jean M. Bacon, “Representing and Enforcing E-Commerce Contracts

Using Occurrences” The Fourth International Conference on Electronic Commerce Research
(ICECR-4) Dallas, TX, USA, November 8 - 11, 2001.

[2] N. Cook, S.K. Shrivastava, and S.M. Wheater, "Distributed Object Middleware to Support
Dependable Information Sharing between Organisations", Proc. IEEE Int. Conf. on
Dependable Syst. and Networks (DSN-2002), Bethesda USA, June 2002.

[3] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “ The Ponder Policy Specification

Language”, in Proc. Int. Workshop on Policies for Distributed Systems and Networks
(POLICY), Bristol, UK, Springer-Verlag LNCS 1995, Jan. 2001.

[4] Aspassia Daskalopulu, Theo Dimitrakos , and Tom Maibaum, “E-Contract Fulfilment and

Agents' Attitudes”. Proceedings of ERCIM WG E-Commerce Workshop on The Role of Trust
in e-Business, Zurich, October, 2001.

[5] Aspassia Daskalopulu. “Modelling Legal Contracts as Processes”. Legal Information Systems

Applications, 11th International Conference and Workshop on Database and Expert Systems
Applications, IEEE C. S. Press, pp. 1074–1079, 2000.

[6] Andrew Goodchild, Charles Herring, and Zoran Milosevic, "Business Contracts for B2B",

Proceedings of the CAISE*00 Workshop on Infrastructure for Dynamic Business-to-Business
Service Outsourcing, Stockholm, June 5-6,2000.

[7] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn and Ramaswamy

Chandramouli, "Proposed NIST Standard for Role-Based Access Control", ACM
Transactions on Information and Systems Security, Vol. 4, No. 3, August 2001.

[8] Paul Halsall, "Ancient History Sourcebook: A Collection of Contracts from Mesopotamia, c.

2300--428 BCE",http://www.fordham.edu/halsall/ancient/mesopotamia-contracts.html,March,
1999.

[9] Gerard J. Holzmann, "Spin Home Page: ON-THE-FLY, {LTL} MODEL CHECKING with

SPIN", http://spinroot.com/spin/whatispin.html, October, 2002.

[10] Olivera Marjanovic, and Zoran Milosevic, “Towards Formal Modelling of e-Contracts”

Proceedings of Fifth IEEE International Enterprise Distributed Object Computing Conference,
Seattle, Washington, September 04-07, 2001.

[11] Naftaly H. Minsky, Victoria Ungureanu, “Law-Governed Interaction: A Coordination and

Control Mechanism for Heterogeneous Distributed Systems”. ACM Press, New York, NY,
USA, TOSEM 9(3): 273-305, 2000.

[12] Franco P. Preparata, and Raymond T. Yeh, "Introduction to Discrete Structures for Computer

Science and Engineering", Addison--Wesley Publishing Company, 1974.

[13] Brian Shand, and Jean Bacon, “Policies in Accountable Contracts”, 3rd International
Conference on Policies for Distributed Systems (POLICY 2002), June, 2002-11-15

 20

[14] Victoria Ungureanu, and Naftaly H. Minsky. “Establishing Business Rules for
Inter_Enterprise Electronic Commerce”. International Symposium on Distributed Computing
(DISC) Workshop on Distributed Algorithms (WDAG), Toledo, Spain, October 4-6, 2000.

[15] Zoran Milosevic, and Andy Bond, “Electronic Commerce on the Internet: What is Still

Missing ?”, Proc. 5th Conf. of Internet Society, pp.245-254, Honolulu June 1995.

 21

Appendix A: Sample of a standard commercial
contract

E-CONTRACT FOR THE PURCHASE AND SUPPLY OF E-GOODS

This Deed of Agreement is entered into as of the Effective Date
identified below.

BETWEEN [Name] AND: [Name]
 of [Address] of [Address]
(To be known as the (Supplier) (To be known as the (Purchaser)
 in this Agreement) in this agreement)

WHEREAS (Supplier) desires to enter into an agreement to supply
(Purchaser) with [Item] (To be known as (E-goods) in this Agreement).
NOW IT IS HEREBY AGREED that (Supplier) and (Purchaser) shall enter
into an agreement subject to the following terms and conditions:

1. Definitions and Interpretations
1.1 Price, Dollars or $ is a reference to the currency of the
[Country].
1.2 All information (purchase order, payment, notifications, etc.)is
to be sent electronically.
1.3 This agreement is governed by [Country] law and the parties
hereby agree to submit to the jurisdiction of the Courts of the
[Country] with respect to this agreement.

2. Commencement and Completion
2.1 The commencement date is scheduled as [date].
2.2 The completion date is scheduled as [date].
2.3 The schedule may be modified by agreement as defined in Section
9.

3. Purchase Orders
3.1 The (Purchaser) shall follow the (Supplier) price lists.
3.2 The (Purchaser) shall present (Supplier) with a purchase order
for the provision of (E-goods) within 7 days of the commencement
date.
3.3 The (Supplier) shall notify the (Purchaser) of acceptance or
rejection of the purchase order within 7 days after the receipt of
the purchase order.
3.4 If the purchase order is rejected, the (Purchaser) shall remedy
the situation within 14 days after the receipt of the notification.

4. Delivery
The delivery of the (E-good) is the responsibility of the
(Purchaser). The (Supplier) shall keep the E-good available for
downloading at the specified e-address for at least 14 days after
receipt of payment. The (Purchaser) shall download the E-good within
this period of time.

5. Payment
5.1 The payment shall be sent in full to the (Supplier) within 7 days
after receiving a notification of acceptance or the purchase order.
5.2 The (Supplier) shall notify the (Purchaser) of acceptance or
rejection of the payment within 7 days after the receipt of the
payment.

6. E-goods rejection

 22

6.1 If the (E-goods) do not comply with the order or the (Supplier)
does not comply with any of the conditions, then the (Purchaser) is,
at its sole discretion, entitled to reject the (E-goods).
6.2 The (Purchaser) shall notify the (Supplier), of acceptance of the
(E-goods) or return the (E-goods) to the (Supplier), within 7 days
after receiving them.

7. Replacement and refund
7.1 The (Supplier) may use its discretion to replace the (E-goods)
according to the invoice or refund any monies paid.
7.2 The (Supplier) shall notify the (Purchaser) of refusal to replace
or refund, within 14 days after the receipt of the rejected (E-goods)
or replace or refund any monies paid, within 14 days after the
receipt of the rejected (E-goods).

8. Termination
8.1 If (Purchaser) or (Supplier) fail to carry out any of its
obligations and duties under this agreement the offender is to be
considered in breach of the e-contract. In this case, the offended
party may issue a notice specifying the breach and request that it be
remedied within 14 days after receipt of such notice.
8.2 If a breach is not remedied, the offended party may send, within
7 days after the failure to receive a remedy to the offence, a
notification of e-contract termination containing:
(a) no-complains.
(b) an invitation to resolve disputes outside this e-contract.

9. Disputes
9.1 (Supplier) and (Purchaser) shall attempt to settle all disputes,
claims or controversies arising under or in connection with the
agreement through consultation and negotiations in good faith and a
spirit of mutual cooperation.
9.2(Supplier) and (Purchaser) shall provide electronic evidences
about breaches of the e-contract.
9.3 This method of determination of any dispute is without prejudice
to the right of any party to have the matter judicially determined by
a [Country] Court of competent jurisdiction.

10. Amendment
10.1 This agreement may only be amended in writing signed by or on
behalf of both parties.

E-SIGNATURES
In witness whereof (Supplier) and (Purchaser) have caused this
agreement to be entered into by their duly authorized representatives
as of the effective date written below.

Effective date of this agreement: [day] day of [month] [year]

 [E-signature] [E-signature]
 [Person] [Person]
 [Role] [Role]
E-address for Notices:
 [E-address] [E-address]

 Split of rights and obligations
Before describing the e-contract in FSM notation, it is advisable to extract, from the
English text, the purchaser’s and supplier’s Rights (R) and Obligations (O).

Supplier’s obligations

 23

O01: Notify Purchaser of acceptance or rejection of Purchase order
 within 7 days after receipt of purchase order.
O02: Place e-goods at e-address for 14 days after receipt of payment.
O03: Notify Purchaser of acceptance or rejection of remedy request
 if the purchaser is not satisfied with the e-goods.
O04: Provide remedies for breaches of the e-contract.
O05: Provide electronic evidences of breach of the e-contract.

Supplier’s rights

R01: Reject a Purchase order if it is not consistent with the
 Requirements Of the contract.
R02: use his discretion to refund monies paid for rejected E-goods.
R03: Use his discretion to replace rejected E-goods.
R04: Notify the Purchaser about breaches of the e-contract.
R06: Terminate the e-contract if the Purchaser does not provide
 remedy within 14 days of receiving a notice that he/she is in
 breach of contract.
R06: Amend contract but only in agreement with the Purchaser.

Purchaser’s obligations
O01: Follow the supplier’s price lists.
O02: Present a purchase order within 7 days of the commencement date.
O03: Send purchase order electronically.
O04: Correct a Purchase order within 14 days after receipt of a
 notification of rejection of the Purchase order.
O05: Send full payment within 7 days after receiving notification of
 acceptance of purchase order.
O06: Download the E-good\s within 14 days after the receipt of the
 payment.
O07: Send acceptance or rejection of e-goods within 7 days of
 receiving them.
O08: Provide remedies for breaches of e-contract.
O09: Provide electronic evidences of breach of e-contract.

Purchaser’s rights
R01: Download the E-goods at anytime within 14 days after payment.
R02: Reject E-goods that fail to match the description.
R03: Receive rejected E-goods replacement.
R04: Receive refund for rejected E-goods.
R05: Notify the supplier about breaches of the e-contract.
R06: Terminate the e-contract if the Supplier does not provide remedy
 within 14 days of receiving a notice that he/she is in breach of
 contract.
R07: Amend contract but only in agreement with the supplier.

In Fig.1 and Fig. 2 PO stands for Purchase Order.

 24

Contract commencement date

 Set 7 days waiting timer

 PO received

Switch of 7 day waiting timer

PO not received within 7 days of
commencement date

 ε

PO not corrected within 14 days of first rejection

 ε

Waiting for
Purchase

Order

 PO accepted

Send PO accepted to purchaser

 PO rejected

Send PO rejected & set 14 day
waiting timer

Payment not received within 7
days of PO acceptance

 ε

Payment received

 ε

Waiting for
Payment

Payment accepted

Send Payment accepted to purchaser &
place e-goods at e-address for 14 days

Payment rejected

Send Payment rejected to purchaser

Checking
Payment

correctness

Goods downloaded within 14 days

Set a 7 day goods response timer

Goods not downloaded within 14 days

 ε

Waiting for
e-goods to

be
downloaded

Goods accepted

 ε

End Abort
Contract

Considering
reasons for
rejection

 Unsatisfactory Goods returned
within 7 days of download

 ε

Refuse to remedy

Inform purchaser to refuse
to remedy

Accept to remedy

 Send remedy.

Waiting for
goods

response

 Supplier

Checking
correctness

of PO

Fig. 1. Supplier’s FSM.

 25

 Payment rejected received

 Set 7 days payment response timer

 Payment sent

PO accepted received

PO rejected received

Contract commencement date

 PO placed

 Set PO response time to 7 days

Waiting for
response

Placement
of payment

 Response timer timeout

Waiting for
response

 Payment accepted received

 Goods available

Check
goods

availability

 Download goods

Goods not available
during 14 days after
making payment

Notify supplier of acceptance

Accept goods

End

Goods rejected sent

Set remedy timer to 14 days

Check
goods

Wait for
remedy

Abort
Contract

 Purchaser

 ε
Placement

of PO

 ε

 ε

 ε

 ε

 ε

 ε

 14 day timeout

 ε

 7 day timeout

 ε

Remedy received within 14`days

 ε

Fig. 2. Purchaser’s FSM.

