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Abstract 

Organisations increasingly use the Internet to offer their own services and to utilise the 
services of others. This naturally leads to information sharing across organisational 
boundaries. However, despite the requirement to share information, the autonomy and privacy 
requirements of organisations must not be compromised. This demands the strict policing of 
inter-organisational interactions. Thus there is a requirement for dependable mechanisms for 
information sharing between organisations who do not necessarily trust each other. The paper 
describes the design of a novel distributed object middleware that guarantees both safety and 
liveness in this context. The safety property ensures that local policies are not compromised 
despite failures and/or misbehaviour by other parties. The liveness property ensures that, if no 
party misbehaves, agreed interactions will take place despite a bounded number of temporary 
network and computer related failures. The paper describes a prototype implementation with 
example applications. 
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1 Introduction 

Organisations increasingly use the Internet to offer their own services and to utilise the 
services of others. This naturally leads to multi-party information sharing across 
organisational boundaries. A trend that is reinforced by concentration on core business and the 
“out-sourcing” of non-core operations to external organisations. However, despite the 
requirement to share information, the autonomy and privacy requirements of organisations 
must not be compromised. This demands the strict policing of inter-organisational 
interactions. Thus the requirement is for dependable mechanisms for information sharing 
between organisations who do not necessarily trust each other. 

This paper describes the design of a novel distributed object middleware that guarantees both 
safety and liveness in the above context. It is assumed that each organisation has a local set of 
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policies for information sharing that is consistent with the overall information sharing 
agreement (business contract) between the organisations. The safety property ensures that 
local policies of an organisation are not compromised despite failures and/or misbehaviour by 
other parties. In essence, the middleware facilitates regulated information sharing through 
multi-party coordination protocols for non-repudiable access to and validation of shared state. 
The liveness property ensures that, if no party misbehaves, agreed interactions will take place 
despite a bounded number of temporary network and computer related failures. 

Section 2 sketches three scenarios from which requirements are derived. Section 3 provides an 
overview of the distributed object middleware we call B2BObjects [Cook et al. 2002]. State 
coordination protocols are discussed in detail in Section 4 and Section 5. Section 6 presents 
the Application Programmer Interface (API), a prototype implementation and two proof-of-
concept applications that use it. Related work is surveyed in Section 7. Section 8 discusses 
future work and Section 9 concludes the paper. 

2 Application Requirements 

In this section we sketch three different application scenarios from which we derive 
requirements for middleware support for dependable information sharing between 
organisations. 

1. Order processing. The process of ordering goods or services includes: requisition; 
agreement; delivery and payment. The process must be validated to ensure that organisational 
policy is adhered to (for example, that a customer is credit-worthy) and that agreements 
between the parties are observed (for example, that the supplier does not arbitrarily modify an 
order). There is also a requirement that payment is made if and only if the items or services 
ordered are delivered. For simple orders, this last aspect of the process is the most significant. 
When the ordering process is more complex, requisition and agreement can acquire greater 
significance. Requisition may include a procurement process involving multiple parties; there 
may be a need to negotiate non-standard terms and conditions; order fulfillment may entail 
commitments from more than one supplier or from delivery agents; or the order may govern 
delivery of an on-going service that should itself be regulated. In these cases it can be argued 
that business is better supported if the organisations involved are able to share the order and 
related agreements. This requires that all interested parties validate updates to the shared 
information. 

2. Dispersal of operational support to the customer. In the telecommunications industry, 
Operational Support Systems (OSS) manage service configuration and fault-handling on the 
customer’s behalf [Mitchener et al. 1999]. For the most part, existing OSS are monolithic and 
centralised. Customers have little or no direct control over critical business processes that are 
carried out for them by the service provider. With the advent of more sophisticated services, 
the customer needs to be able to tailor their complete service. This requires the “dispersal of 
OSS” so that the customer controls the aspects that logically belong to them. The resultant 
devolution of processes and information allows business relationships to evolve to the benefit 
of all involved. To fulfill this promise, there is a requirement for regulated information 
sharing between the organisations. 



 3

3. Distributed auction service. In this scenario, autonomous, geographically dispersed auction 
houses wish to collaborate to deliver a trusted, distributed auction service to their clients 
(buyers and sellers). The clients act upon the state of an auction through servers that are 
controlled by the auction houses. These servers share and update auction state. The clients 
expect the service to guarantee the same chance of a successful outcome irrespective of which 
individual server is used. In effect, the auction houses are providing a distributed trusted third 
party (TTP) service to deliver a regulated market-place for buyers and sellers. The auction 
houses wish to maintain a long-lived, successful service and, therefore, continued interaction. 

Each of the above examples entails multi-party interaction and information sharing. For each 
party the overarching requirements are: (i) that their own actions on shared information meet 
locally determined, evaluated and enforced policy; and that their legitimate actions are 
acknowledged and accepted by the other parties; and (ii) that the actions of the other parties 
comply with agreed rules and are irrefutably attributable to those parties. These requirements 
imply the collection, and verification, of non-repudiable evidence of the actions of parties 
who share and update information. If middleware is provided that presents the abstraction of 
shared (interaction) state, then the requirements can be met by regulating, and recording, 
access and update to that state. 
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Figure 1: Direct vs. indirect interaction styles 

Fig. 1 shows two interaction styles (a and b). In (a), organisations (Orgi) disclose state and 
interact directly. In (b), state disclosure is conditional and interaction is conducted via trusted 
agents (TAi). It is possible to envisage circumstances where both styles will be used: there 
may be an initial direct interaction to agree trusted agents before continuing the interaction 
through those agents; or relationships between organisations may change in such a way that 
indirect interaction evolves to direct interaction. The dotted clouds in Fig. 1 represent the 
deployment of B2BObjects middleware to meet the application requirements outlined above. 
For simplicity, in the rest of the paper direct interaction is assumed unless stated otherwise. 

3 Overview of B2BObjects Middleware 

This section gives an overview of the B2BObjects middleware that is designed to address the 
requirement for information sharing between organisations. Detailed discussion of 
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coordination protocols is deferred to Sections 4 and 5. The API and a prototype 
implementation are described in Section 6 

B2BObjects provides non-repudiable coordination of the state of object replicas. State 
changes are subject to a locally evaluated validation process. State validation is application-
specific and may be arbitrarily complex (and may involve back-end processes at each 
organisation). Coordination protocols provide multi-party agreement on access to and 
validation of state. 

(a) logical view (b) physical realisation
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Figure 2: B2BObjects interaction 

As shown in Fig. 2, the logical view of shared objects in a virtual space (a) is realised by the 
regulated coordination of actions on object replicas held at each organisation (b). 

Multi-party validation of state changes supports the notion of “joint ownership” of shared 
state. A state change proposal comprises the new state and the proposer’s signature on that 
state. The proposal is dispatched to all other parties for local validation. Each recipient 
produces a response comprising a signed receipt and a signed decision on the (local) validity 
of the state change. All parties receive each response and a new state is valid if the collective 
decision is unanimous agreement to the change. The signing of evidence generated during 
state validation binds the evidence to the relevant key-holder. Evidence is stored 
systematically in local non-repudiation logs. 

B2BObjects supports the evolution of enterprise applications to inter-organisation 
applications. Although an object’s implementation is augmented, the application-level use of 
the object may remain unchanged. Fig. 3 depicts this augmentation of an application object. 
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Figure 3: B2BObjects augmentation 

Calls to the object are mediated by the middleware. The intra-enterprise object invocation 
mechanism provides an internal interface to the object that guarantees that state changes are 
coordinated with other organisations through the inter-organisation object invocation 
mechanism. Systematic check-pointing of object state upon installation of a newly-validated 
state allows recovery in the event of general failures and rollback in the event of invalidation. 
The certificate management and non-repudiation services provide: authentication of access to 
objects; verification of signatures to actions on objects; and logging of evidence of those 
actions. In summary, augmentation with B2BObjects provides: connection authentication and 
management; coordination and validation of state changes; persistence of both validated 
object state and of the information required to reach validation decisions; and the logging of 
non-repudiation evidence. 

The careful separation of concerns means that the middleware can be configured to different 
application requirements; to suit a variety of interaction styles; and to use different underlying 
services (for example, to operate in synchronous, deferred synchronous or asynchronous 
communication modes). 

4 B2BObjects State Coordination 

This section provides a detailed discussion of the state coordination protocol at the heart of 
B2BObjects. A discussion of the guarantees provided by the protocol is followed by the 
assumptions and notation that apply to its description. The protocol description includes 
modifications to protocol messages to validate update to, as opposed to overwrite of, object 
state. An informal analysis of protocol vulnerabilities follows the description. The discussion 
is in terms of a single object but applies just as well to the use of a composite object to 
coordinate the states of multiple objects. 

The requirement for unanimous agreement to a proposed state change is fundamental to the 
following discussion. It is imposed because, in the context of mutually mistrusting parties, it 
cannot be assumed that majority agreement to a state change will suffice. For example, any 
majority decision on the validity of a change to an order that is shared by a customer, a 
supplier and a delivery agent is potentially disadvantageous to the minority party. The 
unanimity restriction ensures that the safety guarantee described below can be met. 
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4.1 Protocol Guarantees 

The state coordination protocol regulates overwrites to the state of object replicas by 
validating state transitions. A proposed new state is valid if all parties who share the object 
have validated the transition to that state. A proposed state is invalid if any party has vetoed 
the transition. The notion of valid state is necessarily self-contained: a state is valid if it has 
been unanimously agreed; invalid otherwise. 

The guarantees offered by the protocol relate to reaching agreement on a state transition; to 
the inability to misrepresent that agreement; and, therefore, to the inability to misrepresent the 
validity of object state. The safety guarantee is that invalid state cannot under any 
circumstances be imposed on a local object replica and that evidence is generated to ensure 
that the actions of honest parties cannot be misrepresented by dishonest parties. If all parties 
behave correctly, liveness is guaranteed despite a bounded number of temporary failures. The 
protocol generates evidence to detect misbehaviour. It is assumed that, if necessary, this 
evidence can be used in extra-protocol arbitration to resolve disputes. Specific guarantees are 
detailed after clarifying what the protocol does not guarantee. 

• Amongst the parties who share an object, there is no protection against the disclosure 
of a proposed state change to the object. State must be disclosed to be validated. As 
illustrated in Fig. 1b, trusted agents can be used to provide conditional state disclosure. 
An example of this type of interaction is given in Section 6.1. 

• There is no guarantee of termination when parties misbehave. This is the price of local 
autonomy required for the safety guarantee. The protocol is concerned both with 
verification of the integrity of messages and with the semantic validation of message 
content (a proposed state change). This exacerbates the problem of guaranteeing 
termination since, for example, we do not deduce anything about the validity of a state 
change from a failure to respond to a proposal. The protocol is designed to generate 
the evidence necessary for application-level resolution of any resultant blocking. The 
provision of stronger termination guarantees is discussed in Section 8 

The specific guarantees are: 

• that a state transition proposal is irrefutably bound to its source and to the decisions of 
the parties validating the proposal; and that those decisions cannot be misrepresented 
and are irrefutably bound to their source; 

• that irrefutable evidence of who participated in a protocol is generated; 

• that no party can misrepresent the validity of object state, either by claiming that an 
invalid (vetoed) state is valid or that a valid (unanimously agreed) state is invalid; and 

• that the protocol is fail-safe: faults or misbehaviour may result in the abort or blocking 
of a protocol run but cannot result in the installation of invalid object state at a 
correctly behaving party. 
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4.2 Assumptions and Notation 

It is assumed that the communications infrastructure provides eventual, once-only message 
delivery. If the underlying communications system does not support these semantics then the 
coordination middleware masks this and presents the assumed semantics. There is no 
requirement for the communications system to order messages. Network partitions are 
assumed to heal eventually. Nodes may crash but it is assumed that they will eventually 
recover and resume participation in a protocol run. For non-repudiation, and recovery, 
protocol messages are held in local persistent storage at sender and recipient. 

To generate non-repudiation evidence, each party has access to the following cryptographic 
primitives [Schneier 1996]: a signature scheme such that signature sigA x( ) by A on data x is 
both verifiable and unforgeable; a secure (one-way and collision-resistant) hash function: 
h x( ); and a secure pseudo-random sequence generator to generate statistically random and 
unpredictable sequences of bits. All parties are assumed to have the means to verify each 
other’s signatures. Since a signature is only valid if it can be asserted that the signing key was 
not compromised at the time of use, all signed evidence must be time-stamped [Zhoh & 
Gollman 1997]. It is assumed that a trusted time-stamping service, or services, acceptable to 
all parties is available to each party to generate time-stamps. Given a message 
m = ev,  sigA ev( ){ } from party A, a time-stamping service, TTS, will provide the following 

time-stamp as evidence of its generation at time Tg : Tg ,  sigTTS h m( ),  Tg( ){ }. For brevity, time-

stamps are not shown in protocol descriptions. 

The different roles in n-party coordination of shared object state are distinguished as follows: 

Pset = Pi   i ∈ 1: n{ } is the set of participants 

Pk ∈ Pset  is a proposer of new state 

Rsetk = Pj   j ∈ 1: n  and  j ≠ k{ } is the set of recipients of Pk’s proposal 

Gidi is the group identifier of Pset as viewed by Pi. It is computed when the membership of 
Pset changes (see Section 5). Inconsistent group identifiers lead to invalidation of a 
proposal. 

The state of an object is uniquely identified by a tuple: seqno,  h rn( ),  h S( ) ; where seqno is 
a proposal sequence number, h rn( ) is a hash of a random number, and h S( ) is a hash of the 
state to which the tuple refers. All of these are generated locally by the proposer. The proposer 
creates a new sequence number by incrementing the sequence number of the last known 
coordination request. Thus, the sequence number of any proposed state is guaranteed to be 
greater than that of any agreed state and of any coordination request seen by the proposer. The 
combination of sequence number and hash of the random number disambiguates concurrent 
proposals and guarantees the uniqueness of the tuple. The hash of the state binds the tuple to 
the state identified to enable checks on the integrity of the tuple with respect to that state. 

There are three tuples of interest: 
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NSidk = seqno,  h rnk( ),  h NSk( )  is the tuple that identifies the new state, NSk, proposed by 
Pk (and rnk is a random number generated by Pk) 

ASidi is the tuple that identifies the agreed state, ASi, as viewed by Pi 

CSidi is the tuple that identifies the current state, CSi, as viewed by Pi 

To ensure ordered state transitions, the following invariants should hold during a protocol run: 

1. for Rsetk: CSid j = ASid j = ASidk  (their current state is the agreed state as viewed by 
themselves and by Pk) 

2. for Pk: CSidk = NSidk  (its current state is the proposed state) 

3. for Pset: NSidk .seqno > ASidi .seqno  (which follows from generation of seqno and 
invariant 1) 

4. for Pset: NSidk is unique for all proposals seen 

Breaches of these invariants are detected during a protocol run and lead to invalidation of a 
proposed state transition. 

The following notation is used in addition to the above: 

sigi x( ) is Pi’s signature on value x 

Dk,i is Pi’s decision on the validity of a state transition proposed by Pk. A decision is accept 
or reject plus optional diagnostic information. Di is used as shorthand for Dk,i if the 
proposal to which it relates is unambiguous. (Dk,k is, by definition, accept.) 

Pk → Rsetk : m  means Pk sends message m to each member of Rsetk 

Rsetk → Pk : m j  means each member, Pj, of Rsetk sends a message of type m to Pk 

mi∑  is the concatenation of a set of messages, or parts of messages, of type m 

4.3 Protocol Description 

In essence, the state coordination protocol provides non-repudiable two-phase commit. 
However, the messages exchanged have a richer semantics than could be derived from simply 
signing and counter-signing two-phase commit messages. Pk is committed to acceptance of 
the new state at initiation of a protocol run (at propose step). They cannot unilaterally refute 
the state transition later. A state transition is only rejected if it is vetoed by one or more 
members of Rsetk. The final resolve message is the non-repudiable decision of the whole of 
Pset on the validity of the proposed state transition. The protocol has three steps: 
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Message mp comprises: a proposal, the proposed new state and Pk’s signature on the proposal. 
A proposal identifies Pk and Pset (to verify a consistent view of the group), and specifies the 
proposed state transition from ASk to NSk. h rnk( ), sent as part of NSidk, is Pk’s commitment 
to the random authenticator, rnk, of the group’s decision. 

Message mrj from Pj contains a receipt, h prop( ), for the proposal and a signed decision, Dj, 
on its validity. Inclusion of Gidj, ASidj and CSidj permits systematic consistency checks. 

The resolve message, mrs, is the aggregation of all decisions and of the non-repudiation 
evidence in the form of signed proposals and responses. Any party can compute the group’s 
decision to commit or abort a proposal over resp j∑  and prop. mrs can only be generated by 
Pk since it contains the authenticator rnk. mrs is linked to the other messages in the same 
protocol run through the authenticator and the concatenated, signed responses. 

Pset’s authenticated decision on Pk’s proposal is: 

 

This is non-repudiable evidence of acceptance or rejection of a proposed state transition and 
of the consistency, or otherwise, of the information provided during a protocol run. A 
successful protocol run allows the consistent installation of a new, validated object state at all 
replicas. An unsuccessful run results in the consistent view that a proposed state is invalid. In 
this case, the replicas remain in the state last agreed by all parties (and the proposer can 
rollback to that state). 

4.4 Modifications for State Update 

To allow for update to, as opposed to overwrite of, object state, the propose message, and 
proposal, are modified as follows: 

mp = prop,  USk ,  sigk h prop( )( ){ }; prop = Pk,  Gidk,  ASidk,  NSidk,  h USk( ){ } 

In message mp, the state update, USk, is provided along with the hash h USk( ). A hash of the 
new state, after application of USk, is still provided as part of NSidk. It is therefore possible for 
members of Pset to determine that, if the update is agreed and applied, a consistent new state 
will result. 
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4.5 Protocol Analysis 

We now present an informal analysis to support the assertion of the safety guarantee in 
Section 4.1. To deliver the guarantee, the protocol must withstand subversion by members of 
Pset, whether through deliberate or accidental fault, as well as by intruders. 

Any attempt to subvert a protocol run by generating inconsistent message content can be 
detected. In which case, the proposed state transition is invalidated and irrefutable evidence of 
misbehaviour is generated. It is possible to verify that the signed parts of protocol messages 
are consistent with the unsigned parts and, therefore, to detect internally inconsistent 
messages. It is possible to detect inconsistency between messages because all messages are 
linked to their predecessor(s) in a protocol run. NSidk provides a unique label for each 
protocol run that is linked to each message in the run. It is therefore possible to detect any 
attempt to replay messages from a prior run. (Note: uniqueness refers to the tuple that 
identifies a state proposal NSidk( ) and not to the proposed state NSk( ) — it may be legitimate 
to propose the re-installation of an earlier state.) We now show how the protocol allows 
detection of other attempts at subversion by members of Pset: 

• A member of Pset omits to send a message: If Pk does not send mp then, by definition, 
Pk is unable to show that the new state is valid. If a member, Pj, of Rsetk does not send 
mrj, then Pj will have obtained the proposed new state without providing non-
repudiable evidence of its receipt but they cannot demonstrate the validity of the state. 
If Pk fails to send mrs, then Pk will know, and can act upon, the group’s decision. In 
this case, all members of Rsetk hold evidence that the protocol run is active and any 
subsequent coordination request (whether for a state change or for a connection or a 
disconnection — see Section 5) will reveal inconsistencies between state identifier 
tuples. 

• Pk selectively sends to members of Rsetk: If different messages are sent to different 
members of Rsetk, then the inconsistency will be detected in subsequent protocol steps 
or, in the case of mrs, during any subsequent coordination request. If mp is not sent to 
a subset of Rsetk, then it is not possible to reach a unanimous decision on the validity 
of the proposed state and Pk cannot produce a valid mrs for any member of Rsetk. If 
mrs is not sent to a subset of Rsetk, then this subset can show that the protocol run is 
still active. Further, any honest party who receives mrs can relay it to any other 
member of Rsetk. Selective sending by Pk can be prevented if multicast semantics are 
guaranteed. In the absence of such a guarantee, members of Rsetk can detect selective 
sending. 

• Pk proposes a null state transition: On receipt of mp any member of Rsetk can detect 
that AS j = NSk and can reject a null state transition. 

• Temporary divergence of view of agreed state: it is possible for a member, Pj, of Rsetk 
to prepare two response messages: one representing an accept and the other a reject of 
Pk’s proposal. Pj sends one response to Pk, intercepts a subset of the resolve messages 
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and, in those messages, substitutes the other response. In this case, if, and only if, all 
other members of Rsetk accepted the proposal then some members of Pset will commit 
the state change and others will not (remaining in the currently agreed state). 
However, the guarantee that no member of Pset installs a state that they have not 
validated still holds. Furthermore, the next coordination request will reveal the 
divergent view, as will any attempt to take advantage of the divergence. Thus the 
divergence is temporary: all parties have the information necessary to install the new 
state and all parties eventually (at the next coordination request) receive evidence of 
its validation. If Pk signs the responses, respj, sent as part of the resolve message, mrs, 
then this attack can only be mounted if a member of Rsetk colludes with Pk to prepare 
two different sets of resolve message. 

Assuming signatures are not compromised, the non-repudiation evidence generated during a 
protocol run binds a party to their actions and those actions cannot be misrepresented. An 
intruder in control of a member of Pset can act as a misbehaving party as outlined above. In 
no case can a correctly behaving party be forced to agree (and install) an invalid state. 

With insecure channels between members of Pset, the well-known Dolev-Yao intruder [Dolev 
& Yao 1983] (who has full control over the network but cannot perform cryptanalysis) can 
obtain complete knowledge of proposed object state and of decisions with respect to 
proposals. In addition, they are able to modify the unsigned parts of any message. This results 
in inconsistent message content (dealt with above). Given secure channels between members 
of Pset, this intruder can only remove, delay or replay messages. With or without secure 
channels, it is not possible to undetectably modify messages between members of Pset and no 
member of Pset can be forced to agree invalid state. Thus the most that can be achieved is the 
detectable disruption of the protocol (including the blocking of a protocol run pending receipt 
of messages). In particular, inconsistency between signed and unsigned message content is 
detectable and will lead to exceptional abort of a protocol and invalidation of a proposed state 
change. 

At the end of a protocol run a correctly behaving party will either: (i) be able to install a new, 
valid object state, and hold evidence that it has been unanimously agreed; or (ii) hold evidence 
that the proposed state transition has been vetoed. A misbehaving party may locally install 
invalid state but is not able to misrepresent it as valid. Similarly, they cannot support a claim 
that valid (unanimously agreed) state is invalid. A misbehaving party may prevent termination 
of a protocol run. This must be resolved at the application level by, for example, using the 
evidence generated to invoke a dispute resolution procedure. 

5 Connection and Disconnection Protocols 

This section describes the connection and disconnection protocols used to manage 
membership of the participant set, Pset, for object coordination. Section 5.1 describes the 
roles of subject and sponsor in membership changes. Section 5.2 specifies the group identifier 
for the current membership of Pset and the proposed new membership. Sections 5.3 and 5.4 
provide details of the connection and disconnection protocols respectively. 
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The protocols ensure the maintenance of a consistent, non-repudiable view both of the 
membership of Pset and of agreed object state at membership changes. The connection 
protocol is used to reach agreement on members joining, or re-joining, Pset. Members use the 
voluntary disconnection protocol to leave, or temporarily suspend, membership of Pset. The 
eviction protocol is used to suspend, or end, the participation of uncooperative members of 
Pset. Since each party’s view of agreed state is propagated during membership changes, any 
temporary divergence of view (see Section 4.5) can be resolved during a membership change 
protocol run. An object is withdrawn from coordination by a sequence of voluntary 
disconnections by the members of Pset. In this way, each party obtains a verified view of the 
agreed state of the object at the end of their involvement in its coordination. In essence, the 
protocols propagate non-repudiable evidence of the subject(s) and sponsor of a membership 
change and the agreed state of the object. For connection and eviction, decisions on the 
validity of the proposed change are also propagated. 

It should be noted that, either as part of an interaction agreement or locally-determined policy, 
state changes may require validation by some fixed set of parties. That is, application 
requirements may determine that state changes will be vetoed until all members of the fixed 
group have connected and will be suspended if any member subsequently leaves or is evicted. 
Conditions such as this can be imposed during state coordination as part of the validation 
process. 

5.1 Subject and Sponsor Roles 

In connection and disconnection protocols, the subject of a request is the member joining or 
leaving, respectively; and the sponsor coordinates the decision of the current membership of 
Pset with respect to the request. If a connection request is agreed, the sponsor provides the 
current agreed object state to the subject of the request. The sponsor is also responsible for 
blocking other coordination requests until a decision on a membership change is reached. 

To reduce reliance on a single member of Pset, sponsorship is rotated* . The sponsor of a 
connection request is unambiguously identified as the most recently joined member of Pset. 
That is, given n members of Pset = Pi   i ∈ 1: n{ } ordered by most recently joined member, 
the sponsor of the current connection request is Pn. If the connection request is agreed, then 
the sponsor of the next request will be Pn+1. Thus, any member of Pset can identify the 
legitimate sponsor for a connection request and provide this information to the subject of a 
request. The sponsor of a disconnection request is Pn unless Pn is the subject of the request. If 
Pn is the subject, then Pn-1 is the sponsor — the most recently connected member prior to Pn. 
The use of a sponsor during connection reduces the information gained by the subject in the 
event of a request being rejected. During disconnection, the use of a sponsor limits the 
participation of the subject. If a subject is to be evicted from Pset, then the sponsor may 
initiate the disconnection protocol without their involvement. Since the current sponsor can be 

                                                 

* If sponsor rotation is not required, then the initial member of Pset can sponsor all 
connection/disconnection requests unless they are the subject of a disconnection request (in this case the 
responsibility would pass to the next oldest member of Pset). 
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unambiguously identified, any member of Pset can verify the legitimate sponsor for a request 
and the sponsor is able to block other requests during a membership change. 

5.2 Group Identifiers 

The membership of Pset is uniquely identified by a group identifier tuple: 
seqno,  h rn( ),  h Pi∑( ) . seqno and h rn( ) are generated in the same way as for state change 

proposals. h Pi∑( ) is a hash over the members of Pset. There are two tuples of interest: 

NGidn = seqno,  h rnn( ),  h Pse ′ t ( )  is the tuple that identifies the new group that would 
result from the proposed membership change. h Pse ′ t ( ) is a hash over the proposed 
new membership Pse ′ t ( ). The sponsor of a connection/disconnection request 
generates NGidn. 

Gidi is the tuple that identifies the current group membership as viewed by Pi. Inconsistent 
group identifiers lead to invalidation of a proposal. 

5.3 The Connection Protocol 

In the protocol description, the participant identifier, Pi, is assumed to provide access to the 
information necessary both to establish a connection with Pi and to verify Pi’s signature. As 
for state changes, Dn,i represents Pi’s decision on the validity of a connection request 
sponsored by Pn and, in the description, Di is shorthand for Dn,i. 

The proposed new member, Pn+1, initiates the connection protocol by sending a request to Pn. 
Pn then relays the request to Rsetn  = Pset − Pn( ) to obtain the group’s decision. A random 
number, rnn+1, generated by Pn+1 uniquely labels the initial request. Pn+1 is assumed to have 
access to the information necessary to communicate with Pn. Assuming the connection 
request is unanimously agreed, the protocol proceeds as follows: 

 

An authenticated decision to agree to the connection of Pn+1 is given by: 
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At successful completion of the protocol, the membership of the coordination group is: 
Pset + Pn +1. All members of this group have evidence of unanimous agreement to admit Pn+1. 
Pn+1 has also acquired the agreed state, ASn, and this agreed state can be verified against each 
of the signed agreed state tuples, ASidi, supplied by members of Pset. Thus a consistent view 
of the membership, identified by NGidn, is installed by all parties. 

A connection request from Pn+1 may be rejected immediately by the sponsor, Pn, or may be 
vetoed by a member of Rsetn. In the case of immediate rejection, Pn simply responds to a 
request with a signed reject message: 

 

In the case of veto by a member of Rsetn, the protocol follows the same steps as for a 
successful run except the final message, mrs2, is replaced by mrs3 above. That is, Pn+1 learns 
no more information than in the case of immediate rejection by Pn. Message mrs1 is still sent 
to all members of Rsetn. 

In practice, it is assumed that some advantage accrues to all members of Pset from the 
legitimate involvement of Pn+1 and, therefore, that there is an incentive to cooperate and to 
include Pn+1 in the interaction [Axelrod 1990]. The unwillingness of a member of Pset to 
admit a new member can ultimately only be resolved through extra-protocol dispute 
resolution. The protocol presented meets the requirements of maintaining a consistent, non-
repudiable view both of a membership change and of object state at a membership change. 

5.4 Disconnection Protocols 

Disconnection protocols are required both for voluntary disconnection and for eviction of a 
member of Pset. 

We assume P1 is the subject of a disconnection request, Pn is the current request sponsor and 
Pk is the proposer of the request. For voluntary disconnection: Pk = P1; and for eviction: 
Pk ≠ P1. The disconnection protocols aim to ensure that the remaining members of Pset have 
evidence of the decision to disconnect P1 and that, in the case of voluntary disconnection, P1 

initiated the disconnection. Rsetn
′ = Rsetn − P1 is the recipient set for a disconnection proposal 

sponsored by Pn. For eviction, Di represents Pi’s decision on the validity of the eviction 
request. Since any member of Pset wishing to disconnect may in practice simply cease 
cooperation, voluntary disconnection cannot be vetoed. Thus, Di is not relevant in the 
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voluntary disconnection protocol, which simply ensures that a consistent view of membership 
and object state is maintained. 

The voluntary disconnection protocol is: 

 

An authenticated voluntary disconnection is given by: 

 

This provides evidence that P1 initiated voluntary disconnection and that all other members of 
Pset have seen the request. 

The eviction protocol is: 

 

An authenticated eviction decision is given by: 

 

If the current sponsor is also the proposer of an eviction Pk = Pn( ), the request step is omitted 
from the above protocol and message mp is modified as follows: 

 

and the authenticated decision does not include: req,  sigk h req( )( ){ }. 

It is possible to modify the eviction protocol to allow for eviction of subsets of Pset. In this 
case, an evictee subset, Eset, is identified at the request stage instead of a single member of 
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Pset. If the eviction is agreed, a new coordination group is formed: Pset − Eset . Clearly, 
distinct subgroups can be formed in this way. A new group formed following eviction(s) can 
only claim that its members have agreed to its formation. No claim can be made with respect 
to the agreement of the evictee(s) to the new group membership nor can any assumption be 
made about the evictee(s) agreement or otherwise to subsequent state changes. 

The evidence generated during eviction or voluntary disconnection ensures the new group, 
Pset', has a consistent view of group membership and of agreed object state. After voluntary 
disconnection, the disconnected member has evidence of the group membership and agreed 
object state when they were disconnected. 

6 B2BObjects API and Implementation 

This section describes the B2BObjects API and a prototype implementation of the 
middleware. The prototype is written in Java using Java RMI for remote invocation. Two 
proof-of-concept applications have been developed using the prototype. Both applications 
illustrate two-party, synchronous coordination. However, neither the API, nor coordination 
protocols, are specific to this mode of operation. 

The primary B2BObjects API classes are B2BObject — the application-specific augmentation 
of a local object, and B2BObjectController — the local interface to configuration, initiation 
and control of information sharing. 

A implements B

A B

A is component of B

A B

A uses B

A B

A exports "interface"

A
interface

1

<<interface>>

B2BObject
+applyState()
+applyUpdate()
+coordCallback()
+getController()
+getState()
+getUpdate()
+setController()
+validateConnect()
+validateDisconnect()
+validateState()
+validateUpdate()

ApplicationObject

+getAttribute()
+setAttribute()

<<interface>>

B2BObjectController
+connect()
+disconnect()
+enter()
+examine()
+getB2BDecisionListener()
+leave()
+overwrite()
+update()
+synchronizeUnresolved()

B2BObjectControllerImpl

1

1

B2BObjectImpl

+getAttribute()
+setAttribute()

1

B2BCoordinator
inter-enterprise coord.

cert. mgt & non-repudiation
state checkpointing

<<package>>

B2BCoordinatorLocal B2BCoordinatorRemote

 

Figure 4: B2BObjects API 

The interfaces to these classes and the relationship between them and the B2BCoordinator 
package are shown in Fig. 4. The coordinator package manages inter-organisational 
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connection to and communication between objects, and implements coordination protocols. It 
also provides state check-pointing, certificate management and non-repudiation services. 

The B2BObject interface is implemented by the application programmer. The programmer 
decides whether to produce a new application object that implements both the B2BObject 
interface and the application logic, or to extend an existing application object, or to wrap the 
object with an implementation of the B2BObject interface. For example, the 
ApplicationObject operation: setAttribute(SomeType attr), shown in Fig. 4, has a 
corresponding B2BObjectImpl wrapper operation that could be implemented as follows: 

setAttribute(SomeType attr) { 

    controller.enter(); // start of state access 

    controller.overwrite(); // will overwrite object state 

    appObject.setAttribute(attr); // set the attribute 

    controller.leave(); // end of state access, trigger coordination 

} 

Similarly, the B2BObjectImpl getAttribute wrapper is: 

AType getAttribute() { 

    controller.enter(); // start of state access 

    controller.examine(); // will read object state 

    SomeType attr = appObject.getAttribute(); // get the attribute 

    controller.leave(); // end of state access 

    return attr; 

} 

The B2BObjectImpl is then used in an application in the same way as the original application 
object, for example: 

try { b2bObj.setAttribute(a); } 

    catch (..) { // handle exceptions } 

Given knowledge of an application object’s state access operations, the wrapper methods of a 
B2BObjectImpl class could be generated automatically. As indicated, the 
B2BObjectController enter and leave operations are used to demarcate the scope of access to 
object state. These calls may be nested provided that a leave is invoked for each enter. 
Nesting allows the application programmer to “roll-up” a series of state changes into a single 
coordination event. If overwrite has been called within the current state change scope (as in 
the setAttribute example), then state coordination is initiated at invocation of the final leave, 
as we describe now. 

The controller obtains a copy of the object’s state (using the B2BObject getState operation) 
and passes that state to the coordinator for propagation to remote parties for state validation. 
B2BCoordinatorLocal provides the following propagation interface : 
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public interface B2BCoordinatorLocal { 

    public B2BResult propagateConnect(String sponsorName);  

    public B2BResult propagateDisconnect(String subjectName);  

    public B2BResult propagateDisconnect(String[] subjectNames);  

    public B2BResult propagateNewState(NewStateRequest stateRequest); 

} 

The call to propagateNewState results in state validation at the remote parties via invocation of 
validateState on their copy of the shared object. If a proposed change is accepted by all 
parties, an applyState call on each replica installs the newly validated state. Thus the leave 
operation implicitly invokes the state coordination protocol, via the local coordinator, and the 
validation, or otherwise, of a state change proposal. If a proposed change is invalidated, the 
proposer’s coordinator will rollback their local object state using a call to applyState with the 
previously agreed state. A similar process to that outlined applies to update, as opposed to 
overwrite, of object state. In this case, the B2BObjectController update operation is used to 
indicate the type of state coordination required. The examine operation indicates that object 
state will be read but not written in the current scope. It is envisaged that, together with enter 
and leave, the three access type indication operations (examine, overwrite and update) can be 
used as hooks for concurrency control mechanisms and transactional access to objects. 

The implementation of the B2BObjectController is provided as part of the middleware. 
Together, B2BObject and B2BObjectController provide connection management; state change 
scoping and access type indication; and upcalls for application-level validation. connect and 
disconnect operations initiate connection to and disconnection from the set of objects being 
coordinated (leading to initiation of connection and disconnection protocols via the 
B2BCoordinatorLocal propagation interface). validateConnect and validateDisconnect 
allow application-specific validation of connection and disconnection requests. The 
B2BObject getController method provides application-level access to B2BObjectController 
operations such as: connect, disconnect, getB2BDecisionListener and 
synchronizeUnresolved. 

The semantics of connect, disconnect and leave vary with the communication mode. In 
synchronous mode, they block until the relevant coordination process completes (an exception 
is raised if validation fails). In asynchronous mode, they return immediately and completion is 
signalled by the coordinator through invocation of coordCallback. In deferred synchronous 
mode they return immediately and a call to synchronizeUnresolved can be used to wait for 
completion. coordCallback is also used by the coordinator to communicate protocol progress 
information to the application. getB2BDecisionListener supports asynchronous validation of 
coordination requests. The application programmer uses this method to pass a validation 
decision listener to some arbitrary validation process. In this case, the B2BObject validate 
methods return immediately, with no decision, and the decision listener is subsequently 
invoked to communicate the result of application-level validation. 

The B2BCoordinatorLocal interface is independent of both the communication mode and the 
coordination protocols executed between coordinators through the B2BCoordinatorRemote 
interface. In asynchronous or deferred synchronous mode, the B2BResult returned by the 
propagation methods may simply indicate that a decision is not yet available. The 
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B2BCoordinator Remote interface is protocol-specific and cooperating coordinators must 
export compatible interfaces to execute a given protocol. The B2BCoordinatorLocal 
propagation interface insulates the application from this protocol-specific detail. Thus it is 
possible to configure the middleware to use different coordination protocols without altering 
the application’s interface to coordination. Implementations of coordinator interfaces are 
included in the middleware as part of the B2BCoordinator package. 

We now describe two simple applications that are each illustrative of a wider class of problem 
and demonstrate the adaptability of the middleware to application requirements. Tic-Tac-Toe 
is a two-party game in which the players take turns to modify its shared state according to 
well-defined, symmetrically applied rules. This turn-taking access to shared state is 
characteristic of other applications such as shared white boards. The order processing example 
demonstrates sharing between two parties according to asymmetric rules. 

6.1 Tic-Tac-Toe application 

The aim of a game of Tic-Tac-Toe is to claim a horizontal, vertical or diagonal line of squares 
before your opponent. Players take turns to play. The rules of the game are symmetric. For 
Nought, a vacant square is claimed by marking it with a zero; Nought cannot mark any square 
with a cross; and Nought cannot overwrite an already claimed square. 

 

Figure 5: Tic-Tac-Toe game 

An object that implements the B2BObject interface represents the state of the game and 
encapsulates the rules. Servers representing each player share the object and coordinate the 
object state. A player communicates a move to their server using their local application 
client’s “Save” operation. The servers validate each proposed move (state change) via the 
validateState upcall. A validated move is retrieved by the application client using its “Load” 
operation. Apart from encoding the rules of the game, the application programmer’s task 
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mainly concerns the instantiation of the B2BObjects infrastructure and provision of the user 
interface (the “Load” and “Save” operations are part of this interface and are not mandated by 
B2BObjects). 

Fig. 5 shows an example of the Tic-Tac-Toe game in progress after the following sequence of 
moves: Cross claims middle row, centre square; Nought claims top row, left square; Cross 
claims middle row, right square; then Cross attempts to mark bottom row, centre square with 
a zero. The final move is an attempt by Cross to gain advantage by pre-empting Nought’s next 
move. The state change is invalid and, as can be seen, is not reflected at Nought’s server. The 
agreed state of the game has not been updated and Nought will have evidence of the attempt 
to cheat. Cross forfeits the game. 

As an alternative to playing the game directly between two players, it may be desirable to 
validate moves at a TTP in order to guarantee that they are encoded and observed correctly. 

TTP

cn

Nought

n

Cross

c

B2BObjectx Invocation

Application client Object coordination

Player

Trusted third party  

Figure 6: Tic-Tac-Toe through a TTP 

Fig. 6 represents an instance of the game being played through a TTP that validates each 
player’s move before it is disclosed to their opponent. 

6.2 Order processing Application 

In this application a customer and supplier share the state of an order. Asymmetric validation 
rules apply to state changes. The customer is allowed to add items and the quantity required to 
an order but is not allowed to price the items. The supplier can price items but cannot amend 
the order in any other way. 
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Figure 7: B2BObjects order processing 

Fig. 7 shows an example of an order being updated. The customer and supplier each have a 
replica of an order object that implements the B2BObject interface. The state of each replica is 
coordinated with that of its peer. In the example, the customer orders 2 widget1s. This is a 
valid entry. The supplier then prices widget1 at 10 per unit. The supplier’s action is validated 
and reflected in the customer’s copy of the order. The customer then amends the order for the 
supply of 10 widget2s. This entry is validated and reflected in the supplier’s copy. Then the 
supplier attempts to both price widget2 (a valid action) and change the quantity required (an 
invalid action). As can be seen, this update to the order is rejected and is not reflected in the 
customer’s copy. 

An alternative instantiation of order processing could involve an approver to sanction the 
items ordered by the customer and a dispatcher to commit to delivery terms. The order object 
would then be shared between four parties and the validation rules modified to reflect their 
roles. 

7 Related Work 

The problem of fair exchange of information, or items, of value has received considerable 
attention recently. A system is considered fair if it does not discriminate against a correctly 
behaving party. Fair exchange protocols [Asokan 1998, Ketchpel & Garcia-Molina 1999, 
Vogt et al. 1999] aim to guarantee fairness during a protocol run or, in the case of optimistic 
fair exchange, through an exchange protocol and associated resolve and abort sub-protocols. 
All known fair exchange protocols require either that a TTP is actively involved or is used to 
guarantee termination. [Pagnia & Gärtner 1999] provides a formal proof of the impossibility 
of (strong) fair exchange without a TTP. A distinction can be made between one-off exchange 
and information sharing that is ongoing. It has been shown that relationships that are 
characterised by an indefinite series of interactions have quantifiable, and often strong, 
incentives to cooperative behaviour [Axelrod 1990]. These incentives even hold between 
antagonists. This insight is relevant to the configuration of middleware support for evolving 
interaction styles (hinted at in Section 2 with respect to Fig. 1). 

The work of [Wichert et al. 1999] is close to our approach to systematic generation of non-
repudiation evidence. They propose the generation of evidence at invocation of “tagged” 
methods. They provide non-repudiable RPC but do not address validation of state changes for 
information sharing. 
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Work in the MAFTIA project on distributed trusted computing services [Veríssimo et al. 
2001] is relevant to our plans to investigate the deployment of the functions and services 
provided by the B2BCoordinator package (see Section 6) at a trusted computing base. 
MAFTIA’s work on tolerating the corruption of a proportion of participants in agreement 
protocols [Cachin 2001] is relevant to protocol termination through majority voting. 

In the area of policy-controlled interaction, Ponder [Damianou et al. 2001] is of interest 
because of its unified approach to the specification of both security and management policy 
for distributed object systems. It also allows the import of policy across administrative 
domains. Law Governed Interaction (LGI) [Minsky & Ungureanu 2000] provides an 
infrastructure for interaction between parties governed by global policy. Communication 
between parties is mediated by agents. An agent enforces agreed policy as it relates to the 
party on whose behalf the agent acts. (The agent role is similar, in effect, to that of trusted 
agents in the indirect interaction style of Fig. 1b.) Another approach to the automated control 
of interactions through agreements between organisations is IBM’s tpaML language for 
business-to-business integration [Dan et al. 2001]. Their model of long-running 
conversations, the state of which is maintained at each party, is similar to the notion of shared 
interaction state. Policy-based approaches can be seen as complementary to B2BObjects. For 
example, policy controlling an interaction could be expressed using Ponder, LGI or tpaML 
constructs, and the underlying infrastructure for regulated information sharing could be 
instantiated using B2BObjects. 

8 Future Work 

This section describes plans for future work on: coordination protocols; concurrency control 
and transactions; and support for loosely-coupled interaction. 

8.1 Protocol Development 

Our state coordination protocol provides strong guarantees with respect to the validity of 
decisions reached. It is also efficient in terms of the number of messages required (O n( ) for n 
parties) and is straightforward to implement. The middleware provides persistence both of 
valid state and of protocol messages and, therefore, recovery is possible in many 
circumstances. These characteristics are achieved in the context of stated assumptions with 
respect to failures and, in particular, by not guaranteeing protocol termination when parties 
misbehave. The inability to terminate is detectable and may be resolved outside of a protocol 
run. This extra-protocol resolution will necessarily involve appeal to a third party or parties 
(as is the case for all known fair exchange protocols). If validation depends on the semantics 
of a state change as interpreted by each individual party, then it can be argued that no protocol 
can guarantee termination — all parties must be involved to validate a state change. 
Ultimately, application-level resolution will be required to compensate for a failure to 
participate. Thus our protocol simply results in earlier invocation of dispute resolution. We 
intend to investigate the impact of relaxing failure assumptions (for example: a crashed node 
not recovering) and of providing stronger termination guarantees. Approaches to guaranteeing 
termination include: automatic resolution or abort by resorting to majority decision on state 
changes; and the imposition of deadlines on decision-making. 
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Resort to majority decision-making is an application/interaction-level issue. For example, 
some interactions will demand unanimity, others may permit simple majority decisions on 
state changes or decisions that are made by an identified, minimum subset of participants. We 
intend to investigate configuration of the middleware, and underlying protocols, to meet such 
requirements. 

The imposition of deadlines requires the involvement of a TTP to guarantee that all honest 
parties terminate with the same view of agreed state. In effect, a TTP would provide certified 
abort of a protocol run unless the required set of responses were available (in which case the 
TTP would provide a certified decision derived from those responses). We intend to 
investigate protocols that use both on-line and off-line TTPs in these circumstances. We will 
also investigate the construction of a virtual TTP both from trusted agents acting on behalf of 
the participants to an interaction (where some parties may themselves be trusted agents) and 
from a majority of participants. 

The flexibility inherent in the B2BObjects API allows us to experiment with different 
instantiations of the middleware that use different coordination protocols and to investigate 
configuration of coordination protocols to suit application requirements. A merit of the 
current protocol is that it is an easily understood base for such investigation. 

8.2 Concurrency Control and Transactions 

A second area of future work is concurrency control for B2BObject coordination and the 
participation of B2BObjects in distributed transactions. Currently, we guarantee all fail 
semantics for concurrent state coordination proposals — the inconsistency in state identifiers 
of two or more concurrent proposals leads to the invalidation of them all. It is possible to 
provide at most one success by adopting some convention for deciding the precedence of 
competing proposals. For example, there could be a consistent logical ordering of participants 
that enables each party to independently derive the same priority order of competing 
proposals. Another form of concurrency control to investigate is agreed lock acquisition for 
B2BObjects. Such object locking will be required for work on the participation of 
B2BObjects as transactional resources in distributed transactions. With respect to transactions, 
we envisage scenarios such as a change to a B2BObject requiring modification to information 
stored in a backend database and to the state of other B2BObjects. To deliver ACID (all-or-
nothing update) semantics in this situation, we must provide transactional B2BObjects. 

8.3 Loosely-coupled Interaction and Asynchrony 

B2BObjects provides callback and synchronization mechanisms to support asynchronous and 
deferred synchronous operation. These mechanisms are a basis for support for loosely-
coupled inter-organisational interaction. In addition, we intend to provide implementations of 
the underlying coordination infrastructure that use a wider range of communication 
mechanisms such as Message Oriented Middleware and SMTP for message delivery. In this 
way, a variety of interaction styles can be supported. Issues to address include the impact of 
asynchronous interaction on the application programming model and the participation of 
B2BObject in extended (non-ACID) transactions such as the Business Transaction Protocol 
[Potts et al. 2002]. 
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9 Conclusions 

We have presented middleware that addresses the requirement for dependable information 
sharing between organisations. The middleware presents the abstraction of shared state and 
regulates updates to that state. Safety is guaranteed even in the presence of misbehaving 
parties. If all parties behave correctly, liveness is guaranteed despite a bounded number of 
temporary failures. The middleware presents a familiar programming abstraction to the 
application programmer and frees them to concentrate on the business logic of applications. 
Finally, we have identified areas for further investigation and for development of this 
middleware. 
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