An Overview of the TAPAS Architecture

Santosh Shrivastava

School of Computing Science
University of Newcastle upon Tyne

1. Introduction

This report has been produced in response to the First Year Review requirement that “DS5
should be extended by an attachment which describes the overall architecture of the TAPAS
platform including the actual software tools and runtime support envisaged to exist at the end
of the project”.

In the TAPAS project, we are particularly interested in developing solutions to the problem
faced by Application Service Providers (ASPs) when called upon to host distributed
applications that make use of a wide variety of Internet services provided by different
organisations. This naturally leads to the ASP acting as an intermediary for interactions for
information sharing that cross organisational boundaries. As explained in the main report D5
[1], essentially this means that an ASP should be capable of hosting Virtual Enterprises!
(VEs): meaning, it should be capable of providing facilities for forming and managing VEs.
The main problem in VE management is how enterprises can regulate access to their resources
by other enterprises in a way to ensure that their individual policies for information sharing
are honoured. Regulating access to resources by other enterprises is made difficult, since each
potentially accessible enterprise might not unguardedly trust the others. Enterprises within a
VE will therefore require their interactions with one another other to be strictly controlled and
policed. And in this context, there will be a clear need among all parties to embark upon their
business relationships underpinned by guarded trust management procedures. How can this
be achieved?

It is argued in D5 that to form and manage VEs, we need to emulate electronic equivalents of
the contract based business management practices; this means: (i) relationships between
organisations for information access and sharing will need to be regulated by electronic
contracts, defined in terms a variety of service level agreements (SLAs), and then enforced
and monitored; and (ii) organisations will need to establish appropriate trust relationships
with each other and implement corresponding access control policies before permitting
interactions to take place. It is on this basis that we intend to develop TAPAS platform,
tools and services.

1 A Virtual Enterprise comprises n independently existing and possibly mutually suspicious enterprises
each of which wishes to establish a close business relationship for an agreed period of time without

loosing its independence (autonomy).

2. TAPAS platform, tools and services

2.1. Architecture

The figure shows the main features of the TAPAS architecture. If we ignore the three shaded
entities (these are TAPAS specific components), then we have a fairly ‘standard’ application
hosting environment: an application server constructed using component middleware (e.g.,
J2EE). It is the inclusion of the shaded entities that makes all the difference.

APPLICATIONS
Inter-Org. QoS Monitoring and
Interaction Violation Detection
Regulation

QoS Management, Monitoring and Adaptation

QoS Enabled
Application Server COMPONENT MIDDLEWARE

TAPAS Architecture

The QoS management, monitoring and adaptation layer is intended to make the underlying
application server QoS enabled. It is responsible for reserving the underlying resources
necessary to meet the QoS requirements of applications hosted by that application server,
and monitoring the reserved resources, and possibly adapting resource usage (e.g., reserving
some more) in case the QoS delivered by these resources deviates from that required by the
applications. Specific architectural details are given in deliverable report D7 [2], and further
discussed in section 2.2.

All cross-organisational interactions performed by applications are policed by the Inter-
Organisation Interaction regulation subsystem. Deliverable D5 describes how relevant aspects
of contracts can be converted into electronic contracts (x-contracts) and represented using
state machines and role based access control (RBAC) mechanisms for run time monitoring
and policing; it is further discussed in section 2.3.

It is necessary to ensure that a hosted application actually meets the QoS requirements (e.g.,
availability, performance) stated in the hosting contract SLAs. For this reason, we need an
application level QoS monitoring service, which must also measure various application level
QoS parameters, calculate QoS levels and report any violations. That is the function of the
third subsystem shown in the figure. Design of such a subsystem is part of second year
work.

We can see that QoS monitoring is occurring at two distinct levels: within an application
server for controlling use of application server resources and at higher level for controlling

application level QoS requirements. In TAPAS, QoS requirements will be specified using the
SLAng language described in deliverable report D2 [3].

2.2. QoS Enabled Application Server

QoS control in application server will be implemented, as discussed in D7, by two principal
middleware services, named Configuration Service and Controller Service, respectively, that
can be used to extend an application server. The former service is responsible for discovering,
negotiating, and reserving the resources necessary to meet the QoS requirements of a
particular application component, hosted by that application server; the latter service is
responsible for monitoring the reserved resources, and possibly adapting the component
execution in case the QoS delivered by these resources deviates from that required by the
component itself.

QoS requirements of hosted applications as stated in SLAs have been discussed in TAPAS
deliverable report D1 [4]. These requirements will be specified using SLAng. Such a SLAng
specification will be used for two purposes:

(i) Design Time: Given the QoS requirements, a designer needs to know what should be
the configuration of the application server(s). TAPAS will define the semantics of
SLLAs using stochastic process algebras, and then use model checking capabilities
developed for stochastic process algebras to support reasoning about the performance
and scalability characteristics of components and their composition. This will support
the application service provider in assessing the qualities of service perceived by end-
users prior to developing and deploying an application service. A service composition
and analysis tool will be developed (deliverable D4).

(i) Application Deployment Time: SLAng specification will be used for initialising various
QoS related configuration information required by the configuration service of the
application server, through the deployment descriptors (e.g., for specifying
component replication).

There is one more use of SLAng specification: for configuring application level QoS
monitoring. This aspect is discussed in section 2.4.

Three services/subsystems will be developed, each addressing a specific QoS property
(availability, timeliness and security respectively):

(1) Component Replication: how replication for availability can be supported by
component containers so that components that are transparently using persistence
and transactions can also be made highly available. Initial ideas concerning this work
have been presented as an appendix to the deliverable report D7.

(i1) QoS enabled group communication: how reliable multicast with timeliness delivery
guarantees can be supported. TAPAS project is particularly interested in hosting
applications that perform multiparty communication (e.g., an auction application).
This work will be reported in the second year deliverable report DS.

(i) Trusted coordination: what generic support is required to support inter-
organisational interactions between organisations that need not trust each other. A
specific mechanism for information sharing, called B2Bobject has been developed,
and described in the appendix of deliverable report D5. It is assumed that each
organisation has a local set of policies for information sharing that is consistent with
the overall information sharing agreement between the organisations (this agreement
can be viewed as a business contract between organisations). The safety property of
our system ensures that local policies of an organisation are not compromised
despite failures and/or misbehaviour by other parties; whilst the liveness property
ensures that if all the parties are correct (not misbehaving), then agreed interactions
would take place despite a bounded number of temporary network and computer
related failures. The system automatically maintains non-repudiable evidence of all
inter-organisation interactions. Work on integrating B2Bobjects into component
middleware has begun. Additional coordination mechanisms will be investigated, if
necessary. This work will be reported in the second year deliverable report D9.

2.3. Inter-Organisation Interaction Regulation

In our business model enterprises that engage in contractual relationships are autonomous and
wish to remain autonomous after signing a contract. We assume that interacting entities
cannot simply rely on the trust they have in one another. To be of practical use, such trust
relationships must be managed and observed. Because of this, interacting parties must resort
to mechanisms that guarantee the rights and obligations that each interacting entity promises
to honour. In the worst case, violations of agreed interactions are detected and notified to all
interested parties (for this, an audit trail of all interactions will need to be maintained). Each
enterprise expects access to other’s services. An operation on a service is allowed only if it is
permitted by the rules of the contract and then only if it is invoked by a legitimate role player
of a participating enterprise. Thus, a contract is a mechanism that is conceptually located in
the middle of the interacting enterprises to intercept all the contractual operations that the
parties try to perform. Intercepted operations are accepted or rejected in accordance with the
contract clauses and role players’ authentication.

Our approach is to represent service interactions as finite state machines and make use of role
based access control (RBAC) mechanisms for authenticated access. Use of finite state
machines for representing service interactions has been proposed for Web services (Web
service conversation language, WSCL [5]). We note that inter-organisation business
interactions, PIPs (partner interaction processes) as specified in Rosettanet industrial
consortium [6] can also be represented as finite state machines. In the deliverable report D5,
we describe how contract clauses can be converted into finite state machines.

D5 also describes how B2Bobject coordination mechanism can be used for supporting a
distributed version of regulated contractual interactions encoded as finite state machines. The
main diagram from that report is reproduced below (it depicts purchaser-supplier
interactions).

Purchaser’s FSM Supplier’s FSM

X-contractSigned

X-contractSigned

Waiting for
offer

OfferRcvd

OfferRejected OfferReady RejectedRcvd

SendRejected SendOffer

Deciding to

AcceptedRcvd

OfferAccepted

SendAccepted
ﬁeparing
payment

@ 3

()

Purchaser’s copy
of B2Bobj

Supplier's copy
of B2Bobj

./ B2Bobj

Regulating Inter-organisation interactions

2.4. QoS Monitoring and Violation Detection

Several of the rights and obligations in SLAs in a contract refer to the quality of service (e.g.,
service availability, performance guarantees). We assume that interacting entities cannot
simply rely on the trust they have in one another and assume that QoS levels are being
honoured. To be of practical use, a service provider must be able to demonstrate that the
offered service meets the QoS levels promised to service users; hence the need for the QoS
monitoring and violation detection subsystem. With the agreement of the parties involved, the
hosted applications and services need to be instrumented with appropriate sensors for
measuring QoS parameters. The parties involved must also agree on the QoS evaluation
techniques (calculation procedures to be used). These details need to be encoded in some way
in the SLAng specification language. Then the SLAng specification can be used for configuring
the monitoring and violation detection service. Design of such a subsystem, including
extending SLAng as indicated here is part of second year work.

3. Concluding Remarks

We have presented an overview of the TAPAS architecture. Referring to the figure in section
2.1, we have identified three subsystems that the project will develop. For each of these
subsystem, we have identified tools and techniques the project will develop. We have also

described how the technical details presented in the three deliverable reports, D2, D5 and D7
relate with each other.
References

[1] TAPAS Deliverable report D5, “TAPAS Architecture: Concepts and Protocols”, March
2003.

[2] TAPAS Deliverable report D7, “TAPAS Architecture: QoS Enabled Application
Servers”, March 2003.

[3] TAPAS Deliverable report D2, “Specification Language for Service Level Agreements”,
March 2003.

[4] TAPAS Deliverable report D1, “Application Hosting and Networking Requirements”,
September 2002.

[5] Web Service Conversation Language (WSCL) 1.0 (http://www.w3.org/TR/wscl10/)

[6] Rosettanet implementation framework: core specification, V2, Jan 2000.
http://rosettanet.org

