
Software Architectures for Service Level

Agreements and Contracts

Carlos Molina-Jimenez1, Jim Pruyne2, and Aad van Moorsel1

1 University of Newcastle Upon Tyne
School of Computing Science

Newcastle upon Tyne, NE1 7RU, United Kingdom
{carlos.molina aad.vanmoorsel}@ncl.ac.uk

2 Hewlett-Packard Laboratories
1501 Page Mill Rd.

Palo Alto, CA 94304
jim.pruyne@hp.com

Abstract. Service level agreements have traditionally played an impor-
tant role in computing system management solutions. With the emer-
gence of business-to-business, utility and grid computing, additional
types of contracts and agreements have emerged. These agreements serve
several purposes, from documenting business agreements to automating
security and service management, and come in various shapes and forms,
from paper copies to software objects. It is being realised by experts in
the field that in order to support automated adaptation and management
of systems and operations, agreements should be encoded and integrated
in software platforms that support multi-party interactions and/or man-
agement solutions. In this paper, we review the state of the art in software
architectural support for various forms of agreements, for all stages of
their life-cycle. We also review emerging platforms in standard bodies,
industries and academia.

1 Introduction

We will argue and illustrate in this paper that a distributed computing infras-
tructure must incorporate agreements as first-class software building blocks if it
wants to support automated adaptation and management in the presence of mul-
tiple (possibly competing) interests. These agreements represent expectations
and obligations of various partners about the functionality and performance of
systems and services. But more so, these agreements are a tool to enable auto-
mated decision-making for adaptation and management, and can be useful even
if there are not multiple parties involved in formulating the agreements (as we
will make clear below).

Modern-day and emerging computing infrastructures are increasingly flex-
ible in their support of computational models as well as business models, as
witnessed by the developments of adaptive and on-demand computing solutions
proposed by the likes of HP, IBM, Oracle and SUN. These solutions typically

envision a service provider model for various aspects of computing, such as CPU
use, network use, application hosting, etc. From a software platform perspec-
tive, such solutions are often tied to the grid, which deals with resource sharing
across multiple parties using open software. The solutions rely on virtualisa-
tion of resources and applications, shielding the customer or operator from the
complexities of the underlying infrastructure.

It will be interesting to see how the various research and commercial solu-
tions will fare over the coming years and decades, and how the market judges
the trade-off between added functionality and increased complexity. Irrespective
of how things develop, it seems to us that a necessary piece of any infrastruc-
ture supporting such computing models must be an embodiment of ‘agreements’,
which the platform uses if some of its functions require to know the expecta-
tions and obligations of involved physical and logical entities. Agreements come
at various levels of granularity, ranging from service level agreements as used
in the telecommunication industry, to full-blown contracts between business-to-
business partners that include clauses that stipulate how and when purchase
orders must be processes, the average response time of the system, etc. Agree-
ments naturally fit the service provider model, but also provide the necessary
information to allow for automated decision-making by self-managing compo-
nents and services.

There are many open issues in the technology required to support agree-
ments. The emphasis in this paper is on a survey of existing and ongoing work,
with pointers to remaining research issues. We divide up the technologies in (1)
specification, (2) provision, (3) monitoring, (4) adaptation and (5) resolution,
roughly following the life cycle of typical agreements. Table 1 summarizes our
findings. In Section 4 we then discuss proposed solutions by standards bodies
(WS Agreement in the Global Grid Forum), industries (Hewlett Packard and
IBM enterprise IT) and academia (TAPAS, an EU-sponsored research project).
To set the stage, we now first discuss terminology used in this paper and in the
literature.

2 Usage Models and Definition of Agreements

Contracts. In the business model assumed in this interacting parties (for
example two business enterprises that decide to trade over the Internet) are
mutually suspicious and reluctant to engage in business interactions unguarded,
because of this, interactions are regulated by legal contracts signed by the in-
teracting parties. Contracts come in different forms, sizes and shapes, yet in our
view contracts used to regulate Internet interactions should have the following
three elements: header, functional and non–functional requirements (see Fig. 1);
it should be noted that authors that address the issue of contract automation,
call these requirements functional and non–functional Service Level Agreements
(SLAs), respectively.

The contract header consists of names and addresses of the parties involved,
star and end dates and a description of the service in English prose. Functional

Contract
Service description:
The service provider (SP) will provide
1 GByte of storage to the service con-
sumer (SC) for 6 months …

II) Functional requirements
1.1 The service consumer shall pay his
bill monthly by the 10th of the following
month.
1.2 The service owner shall send his bill
by the 5th day of the month.

III) Non-functional requirement
1.1 Response time shall be less than …
1.2 Max time to repair shall be less than
5 min on working days between
08 and 21 hs.

Signature Signature
(service owner) (service consumer)

Fig. 1. Elements of a typical contract for Internet business.

requirements encompass terms and conditions that stipulate how high level busi-
ness interactions such as request purchase order, send payment, send refund, etc.
On the other hand, non-functional requirements include technical parameters
that describe the performance of a system, such as response time, availability,

reliability, time to repair, etc. Intuitively, functional requirements are meant to
describe the reliability of a service that a business partner offers such us book
selling and ticket reservation, where the input and output that the service ac-
cepts and receives depend of decisions made by the humans that run the service.
Likewise, non–functional requirements are meant to describe requirements that
are not influenced by the humans that run the service at will.

Usage Models. There exists a progression of usage models for agreements.
First, we have what is known as contract management, in this model an agree-
ment is a computer readable file, or a set of them, that describes a deal between
a customer and a provider. At the least, the electronic agreements serve the
purpose of book keeping, both for customers and providers.

Secondly, an obvious next step is to migrate from readable files into exe-
cutable files; that is, to develop software sophisticated enough to automatically
or semi-automatically monitor the observance of the agreement to allow the
involved parties to determine (possibly at run–time) if the agreement is met.
Such usage of agreements is typical for service level agreement deployment in
telecommunications, we will call it automated agreement monitoring.

Thirdly, we can further automate the process of initiating and adapting ser-
vice usage, as a matter of protocol, so that all changes in the platform follow
specification of the agreement, which will normally identify elements such as
access rights, quality–of–service expectations, penalties, etc. We will call this
approach automated agreement management. With this approach, the platform
then effectively utilises agreements as the core element to keep itself organised,
and communicate organisational aspects to the involved parties. Moreover, it
inspects the agreements continuously if access rights or other operational rights
and obligations need to be assessed.

Finally, an agreement can be the core piece of information required by self-
managing components, optimisation algorithms, and other decision-making en-
tities to enable them to automatically adapt and manage systems and services.
We call this usage model automated internal agreement-based management.

In the last two usage models, agreements do not require the explicit involve-
ment and agreement of multiple parties. Instead, they can be introduced by the
management system as a set of goals and rules representing conflicting inter-
ests, but remain hidden to the interested parties. Various modules in the system
use these ‘hidden’ agreements [24] for the purpose of automated adaptation and
management.

Terminology. In our view, the usage model that has the largest implications on
software architecture is the automated agreement management; for this reason,
it will be primary focus of interest of this paper. In this paper, we therefore use
the term agreement to mean:

An agreement is a machine interpretable specification of the value of a
set of selected parameters of a service instance, involving more than one
(logical) party, to assist in automation.

We do not restrict in any way the chosen parameters, which can represent qual-
ity of service levels, penalties and payments, functional agreements about mes-
sage exchanges, and anything else business partners may like to specify. Note,
however, that specifications of messages exchanges, such as defined in BPEL
(Business Process Execution Language) or RosettaNet, do not satisfy our defi-
nition of agreement, since the purpose of these standards is to tell designers of
cooperative business applications what messages are involved in each business
operation rather than defining how their execution environments are expected
to perform upon sending or receiving messages; consequently, neither BPEL or
RosettaNet have means of expressing business interactions as parameter-value
pairs.

Neither do we restrict the type of automation one can think off, e.g., auto-
mated conformance monitoring, automated adaptation or management. Impor-
tant in the above definition is that more than one party is involved, even if there
is not necessary a physical or human embodiment of these parties, or even if the
physical or human embodiments may not be aware of the agreements.

status open or underdeveloped issues

Specification various specification languages [14,38,11,13,40] right mix of expressiveness
WSLA [11] in WS Agreement [2] and simplicity standardisation

(domain-specific) ontologies

Provision job scheduling mapping between agreement
resource provision [16] goals/constraints and resources
monitoring provision [38,11] domain or product-specific

deployment templates [16]

Monitoring automated monitoring at points-of-presence [26] measurement protocols [24],
trusted third-party solution enhanced trust solutions

Adaptation optimisation algorithms [29,39] guaranteed Internet QoS,
self-management [18] self-management in grid

software [19,44]

Resolution non-repudiation [9] changing and terminating
trusted third party agreements,

enhanced trust solutions

Table 1. Survey of state of the art and open issues.

It may be good to compare our definition of agreement with existing ones, for
instance that for service level agreement in IETF RFC 3198 [46]. In this work,
a service level agreement is defined as ‘the documented result of a negotiation
between a customer and a provider of a service, that specifies levels of QoS or
other attributes of the service.’ A service level objective is ’a set of parameters
and their value.’ This is a very natural definition, similar to ours, but different in
the fact that it assumes parties to negotiate, a requirement no longer practical
or desirable for our usage models. Note that the RFC 3198 definition also points
to QoS, which is a typical connotation when SLAs are concerned.

It is important to clarify the relationship between policies and agreements.
Agreements are certainly not policy rules, which IETF [46] defines as ‘a set of
rules to administer, manage and control access to [...] resources.’ Instead, agree-
ments are a multi-party variation of ‘policy goals,’ defined as ’a definite goal
[...] to guide and determine present and future decisions.’ In our set-up, policy
rules are one of many possible approaches to adapt and manage a system. Other
possibilities include games, auctions or run-time mathematical optimisation al-
gorithms. In summary, policies are excluded from our definition of agreement
simply because we are interested in applications that entail business collabora-
tion between two or more independent and autonomous enterprises.

3 Agreement and Infrastructure Requirements and

Properties

To allow an infrastructure to automate adaptation and management based on
agreements, the agreements must have various properties, and must enable var-
ious specific tasks at various stages of the agreement’s life cycle. We divide and

discuss these properties and requirements in five groups, roughly corresponding
to various stages in the life-cycle of an agreement.

1. Specification. Languages and formalisms for expressing the agreement,
choice of metrics, desired/required contents, validity and changes, negotia-
tion.

2. Provision. Automated and customised deployment of resources and mon-
itoring tools, dealing with resource scarceness.

3. Monitoring. Techniques and tools for collecting performance metrics, al-
gorithms for evaluation of performance, violation notification, functional and
non-functional SLAs, third-party involvement, exchange protocols.

4. Adaptation. Decision-making about new requests and adapting resource
allocations, business-driven, alarm handling, self-management and auto-
nomic management.

5. Resolution. Auditing and non-repudiation, conflict resolution.

Within each item, we discuss issues ranging from security requirements and au-
tomation needs to standardisation and third-party solutions. Table 1 summarizes
our findings.

3.1 Specification

To understand what a language for SLAs specification does it is perhaps useful
to compare it against a service description language. As it names implies a ser-
vice description language, such as WSDL (Web Service Description language)
describes what the service can do and how the client can invoke it. The descrip-
tion of the service in a language that the two interacting parties understand
ensure that two parties can validate and interpret each of the fields contained in
the messages or documents that they exchange. However, a service description
language is not meant to describe the behaviour of the interacting parties in
terms of performance, that it, it defines, for example, what a server is expected
to do, but it does not say how well, fast, efficiently, etc. This is where SLA lan-
guages play their role. The goal of a SLA is to describe the performance of the
two interacting parties when they interact with each other, normally following
a service description, to perform business. In our view, the service description
and the SLA description are two issues that should be addressed independently;
there is a large class of applications that in order to reduce costs, might opt for
a best–effort service (one without any SLA expectations).

Because SLAs is not a well–understood issue yet, current Internet business
contracts often leave computation and communication requirements unspecified
and open to interpretation; for example, it is common to come across services
providers advertising services whose availability is no less than 99.9% or average
response time less than 2 seconds; specifications like these give the customer
only a vague idea about what performance to expect from the provider; since
the customer’s interpretation can differ from the provider’s, this can easily drive
the business partners into disputes.

Common sense tells us that disputes can be prevented from happening or be
fairly settled if one can find a means for describing SLAs in a notation that the
two business partners (and possibly third party observers) read and interpret
in the same way. We mention third parties here because we envision that some
business partners might rely on third parties to conduct the required monitoring
activities. Likewise, in disputable situations caused by the occurrence of failures,
third parties (for example, an arbitrator) might be called to analyse records of
evidence about the business interaction and settle a dispute. The challenge here
is to find such a language. The issue has been studied both by academic and
industry researchers; as a result several proposals have emerged; in the following
sections we will discuss what we consider the most representatives in terms of
originality and commercial influence; our hope if that our unbiased criticism will
give the reader a good understanding about what is provided and missing in
each proposal.

To put our discussion in context it is perhaps useful to clarify that in general
the proposals for SLAs specifications can be classified into two broad categories:

Ontological specifications: They rely on the expressivity of natural lan-
guages to describe the behaviour of a contracting party; thus an ontological
specification for response time will look more or less like this: ”The response
time for operation Oi is the amount of time, in seconds, elapsed between the
start of the operation and the receipt of the expected results”. In our opin-
ion, ontological specification are of little use in automatic monitoring and
enforcement of contractual interaction, unless they are supported by some
means of formalism; for this reason we will not discuss them further.

Formal specifications: They rely on the power of formal notation to describe
the behaviour of a contracting party; rather that using elaborate English
sentences, a formal notation uses a precise and compact mathematical no-
tation, for example, the response time for an operation will be described by
the algorithm or arithmetic equation to compute it.

Another comment that might help the reader to follow the discussion is that
specification of SLAs is still a research topic; consequently, there is consensus
yet about what QoS parameters are the most relevant to assess the QoS offered
by service providers; no surprisingly, different SLAs languages offer means for
describing different parameters; all depends on what their designer had in mind
at design time.

SLAng SLAng is a language for specifying non–functional SLAs expected be-
tween two entities that offer some service to each other. Unlike similar languages
that focus only on interactions at Web services level, SLAng was designed with
generality in mind, thus it can be used to specify SLA for application service pro-
visioning, Internet service provisioning, storage service provisioning, and other
services, regardless of the level at which the interaction occurs.

The non–functional SLAs are specified in what is called, a SLAng docu-
ment. From the point of view of its contents, a SLAng document is contractual

document between two parties and contains the usual contract headers (names,
addresses, start and end dates, etc.) and the service level specification (SLS) that
rigorously specify the expected performance of the interacting parties. In SLAng,
reduction of ambiguity of SLAs is achieved by means of applying meta–model
techniques. First, the syntax of SLAng is modelled in UML (after a manual trans-
lation from XML), this defines the format of SLAs. Secondly, the abstract syntax
model is embedded in what is known an environment and behaviour model. In-
tuitively speaking, this environment and behaviour model defines the semantic
of SLAng, as it describes the service infrastructure (objects) and the events (for
example, response time less or equal t) associated with the behaviour of both
the provider and the consumer. The violation of the semantics is captured by
introducing OCL (Object Constraint Language) constrains into the model. The
goal of co–locating the syntactic and semantic models is to associate syntactic
and semantic elements so that the scope for disagreements over the meaning
of syntactic terms is narrowed. The strong side of SLAng is that is a formal
specification language which leaves little or no room for ambiguities is SLAs
specification. Another positive aspect of SLAng is that it is an XLM document
that can be easily integrated with existing service description languages such as
WSDL and BPL. Furthermore, the SLAng document can be edited and validated
against language specification, using standard tools. The weak side of SLAng is
that it is still an on–going work, consequently, it latest version do not incorpo-
rate yet crucial parameters such as management actions (penalties) to respond
to SLAs violations; it does not include either SLAs templates or reuse of SLAs
clauses, consequently, it does not have means for reusing parts of specifications
between classes of services or from developing new specifications from existing
ones; perhaps the most serious limitation of SLAng is its lack of flexibility in QoS
metric definition as in SLAng these metrics are built into the language, unlike
WSOL where they are defined externally by means of an ontological vocabulary.

The Web Service Offering Language The Web Service Offering Language
(WSOL) is an academic proposal for specifying SLAs, designed at Carlenton
University [42]. WSOL focuses on Web service interactions. One of the strengths
of WSOL is that is an XML notation fully compatible with the WSDL descrip-
tion language. As its names suggests, WSOL extends WSDL with capabilities
relevant to service offering. A key concept in WSOL is that of classes of ser-

vices which are defined as services of the same functionality but with different
constraints; the goal behind this concept is to cater for customers with different
budgets and needs. Thus the authors of WSOL envision that an arbitrary Web
service will offer a service S as a set of classes c1, c2, ..., cm, where ci and cj offer
the same functionality but differ in terms of constraint parameters that can be
formally expressed as Boolean or arithmetic expressions; the use of formalism
for expressing constraints results in a formal specification of classes of services.
An important particularity of WSOL is that it enables the specification of a
wide range of constraints; their designers claim that its latest version can spec-
ify functional and non–functional constraints, simple access rights, payment (for

service and penalties), contractual parties (provider and consumer) and moni-
toring third parties, and relationships between service offering. Another valuable
particularity of WSOL is its emphasis on reusability, that is, it has means for
using a given specification for a class of service several times; this simplifies the
specification of new classes of services and simplifies monitoring procedures.

IBM’s Web Service Level Agreement Language The IBM’s Web Service
Level Agreement Language (WSLA) is a SLAs specification language [23]. As
its name suggests, the focus of the WSLA is Web services, that is, application
interactions; however, it can also be used to specify SLAs between two inter-
acting parties lower levels. A SLAs specification written in WSLA is an XML
document that formally defines what the two interacting parties expect from
each other in terms of response time, throughput and similar parameters; it con-
tains three major parts: the names of the parties (signatories and supporting
third parties), the service definition (valid operations, metrics, parameters, mea-
surement), obligations (threshold to be met) and penalties and administration
procedures to activate when SLAs violations are detected. The goal of an WSLA
specification is twofold; at deployment time it helps the interacting parties to
configure their resources so that the SLAs at met at run time. At run time it
helps the interacting parties to monitor each other performance and to detect
and notify violations. Unlike WSOL, WSLA does not support the concept of
service classes; this miss can be serious limitation in Web service applications
that sell services to several customers as the management of such applications
can become rather complex. Like in SLAng and unlike in WSOL, QoS metrics
in WSAL are defined within the model.

3.2 Provision

As we have mentioned repeatedly, the main point of introducing electronic agree-
ments is to automate various aspect of system and service management and
adaptation. In this section we consider the first phase of the agreement life cy-
cle, namely the provision of the service specified in the agreement as well as the
provision of the monitoring software to verify if an agreement is being met.

Since we are dealing with contracting parties that are mutually suspicious,
the main problem here is to deploy the necessary infrastructure to monitor the
observance of the contractual agreements. For instance, in automated agreement
management, the contracting parties need to deploy their executable version of
the original contract to ensure that the observance of functional requirements is
monitored; however, this is not straightforward as the formal model of the func-
tional requirements needs to be checked for logical consistency before creating
its executable version, to guarantee that the latter offers an acceptable level of
dependability. The goal here is to remove possible faults that the original and
informal specification of functional requirements might have as a results of er-
rors made by the humans in charge of drawing-up the contract. Secondly, the
executable code of the functional requirements needs run time support; it needs

a mechanism to collect evidence about the business interaction and to drive the
executable code back to synchrony when failures in the execution environment
such as unexpected delays and network breakdowns drive the executable model
into inconsistent states.

In terms of the software architecture we can identify two extremes in the
range of possible approaches. On one end, the functional specification of a ser-
vice interaction, or of resource usage, is given in the form of a file, typically
human readable for reasons of convenience. Examples of this are job descrip-
tions using the Grid job description language, or utility computing definitions in
the SmartFrog language [16]. At the other extreme, the functional specification
is a first-class software object (or service) itself, with standardised interfaces.
This is the idea behind WS Agreement, which we discuss in detail in Section
4.1. The mixture of the two is very natural, such as in the case of SmartFrog. A
readable template-based resource specification is created and then interpreted
by the SmartFrog provision system, which keeps track of it as Java object.

When we review the technologies of HP and IBM in Section 4, we see these are
driven by utility or on-demand computing opportunities [20]. The key enabler
of utility computing is software for automated provision, such as SmartFrog
[16] and Oceano [3]. Enrichment of such software to be governed by agreements
is needed to deliver on the promise of fully automated management in multi-
party setting. As an aside comment, it worth mentioning that to the best of our
knowledge Oceano is one of the first projects to address the issue of meeting
SLAs without over provisioning, it was developed by IBM in 2001.

Monitoring provision. Much of industry research in the area of monitoring
has been concerned with automatically igniting monitor activities, that is, with
automated provision of monitoring. This emphasis is understandable, since one
of the major challenges in using monitoring software is to minimise the effort
required to instrument systems and initiate the monitoring.

A well-specified agreement is an excellent tool to determine what monitoring
is needed. The challenge is not to specify the required monitoring, but to infer
from the functional and service levels what monitoring should be started up,
who is in charge of the monitoring, when alarms should be generated and when
SLA breaches occur. This idea is described by Sahai et. al. [38,24] in the context
of web services.

3.3 Monitoring

Monitoring is all about observing the behaviour of a business partner during the
business interaction to collect non-repudiable evidence that can be used to:

– detect diversion from acceptable behaviour.
– trigger corrective mechanisms.
– solve disputes originated from failures to deliver the expected service.

In Section ?? we argued that most contract used in Internet business should
contain functional and non–functional requirements. In the following subsections

we will discuss the infrastructure to monitor this two kind of requirements. Since
the focus of this paper is on automated agreement management, we will devote
our effort to monitoring of non–functional; however, to help the reader put the
issue in context, we will also briefly discuss monitoring of functional SLAs.

It is worth clarifying that the goal of both functional and non–functional
requirement monitoring is to ensure that the interaction between the business
partners progress as specified by the SLAs stipulated in the business contract;
consequently, in practice, the contract itself will stipulate what is to be moni-
tored, when, where and by whom. In addition to these contractual monitoring,
it is sensible to expect that some business partners might deploy private moni-
toring infrastructure to conduct internal monitoring, that is, monitoring of their
own resources perhaps with the intention of taking corrective measures before
the contractual monitors detect and notify a SLAs violation; or perhaps with
the intention of optimising the usage of their resources.

Information collected from both functional and non–functional monitoring
are essential to business interactions based on SLAs as they serve two purposes:

– they are used as inputs to algorithms that compute performance and detect
and notify diversion from acceptable behaviour.

– they are used as evidence to resolve possible disputes between the business
partners about failures to meet expected behaviour.

From the above discussion it follows that data collected by monitors has to
be non–repudiable; because of this, in several practical applications it is collected
by third parties trusted by the business partners.

Monitoring of functional SLAs To monitor functional SLAs we need an
infrastructure with focus on observing the sporadic occurrence or absence of
specific events of interest such as purchase order requested, payment send overrun

its deadline, refund request, etc. A functional requirement monitor is normally
realised as a piece of software conceptually located between the two interacting
parties, to intercepts the messages related to their business interaction. This
piece of software is known as executable electronic contract (x–contract) as it
contains all the necessary information to determine what messages are valid at
a given step during the business conversation. Valid messages intercepted by the
executable electronic contract are forwarded to its intended destination, whereas
invalid ones are bounced back to the sender or ignored. A rather abstract and
simplified infrastructure for monitoring functional SLAs is shown in Fig. 2.

How the electronic executable contract can be realised is a matter of prefer-
ences. Alternatives for formally representing the functional SLAs include Finite
State Machines, Petri Nets, event calculus and other event–condition–actions
mechanisms and temporal logics. Such electronic executable contract can be im-
plemented centralised or distributed; furthermore, it can be deployed within the
interacting parties or in a trusted third party that plays the role of a central
authority.

x-contract

applica-
tion

provider consumer

applica-
tion

Internet comm.
channels

Fig. 2. Monitoring of functional SLAs.

Monitoring of non–functional SLAs To monitor non–functional SLAs we
need an infrastructure with emphasis in observing and measuring the perfor-
mance and availability of individual resources; examples of individual resources
are cpu, databases, network, etc.; consequently, the monitoring system should
collect enough information to compute response time, number of served trans-
actions, time to repair, bandwidth, number of message lost, etc. With non–
functional monitoring, the interest lies in detecting performance and availabity
delivered below or above acceptable water marks; in practice, these water marks
are evaluated over specific periods of time (for example, time to repair should be
less than 24 hs) or over an specific number of operations (for example, 98% of all
transaction should complete successfully). From this discussion it follows that
practical realisations of non–functional monitoring systems include hardware or
software–built sniffing sensors, interceptors and other similar devices that per-
manently, periodically or sporadically measure the device of interest and collects
metrics about its performance.

Monitoring of non–functional SLAs has been discussed in several papers pub-
lished in proceedings of conferences on e–commerce, Grid computing and Web
services conferences; however, in most of these works the discussion of monitoring
of non–functional SLAs is often mixed with Web and Grid services implementa-
tion technologies; these details in our opinion make it difficult to identify, isolate
and reason about the key issues that monitoring of non–functional SLAs involves;
a publication discusses the fundamental concepts of non–functional monitoring
of SLAs at an abstract level is [25]; we will take this work as the basis for the dis-
cussion of this section; accordingly with the author of this work, the main issues
the designer of system for monitoring non–functional SLAs has to keep in mind
are: specification of SLAs, computational infrastructure used by the provider to
build his service, communication infrastructure used by the consumer to gain
access to the service, service point of presence, metric collection, measurement,
evaluation and violation detection services.

Computational and communication subsystem The computation subsys-
tem consists of the infrastructure (computers, LANs, databases, etc.) that the
provider uses to produce the service before exposing it to the service consumers

through one or more interfaces. The communication subsystem or infrastructure
consists of one or more independent and autonomous ISPs that compose the
communication path (e.g. ISP1, ISP2, ISP3) to deliver the service from the
provider’s interface to the service consumer. In this scenario, the QoS received
by a given service consumer is affected by both, the QoS guaranteed by the
computation subsystem and the QoS guaranteed by he communication subsys-
tem; a factor to keep in mind here is that with current Internet technology, the
QoS of the computation subsystem is mostly under the control of the provider;
whereas the QoS of the communication subsystem that links the provider and
the consumer depends on the QoS guaranteed by the group of ISPs that com-
pose the path; this path will introduce delays, jitters, packet loss, connection loss
and other communication–related disturbances; in processing–intensive applica-
tion one might consider these disturbances negligible and ignore them; however,
there is a large class of applications (for example, auction and stock market
services) for which the performance of the communication subsystem is if great
relevance.

Service point of presence Due to the influence of the communication sub-
system, the QoS that a provider can offer to its consumers is not necessarily the
same across the whole Internet. Thus, we can imagine that at points A and B

the provider will be able to offer a service with QoSA and QoSB , respectively;
whereas at point C the provider offers a service with no guarantee about its
QoS, that is, it offers, only best–effort QoS.

We call points of presence of a provider the ISPs to where the provider
can deliver its service with a guaranteed level QoS. Surprisingly, because of the
reasons briefly explained below and discussed at large in [8,25,34], the creation
of points of presence is not trivial in the current Internet.

Guaranteed QoS delivered to service consumers results in higher revenues
for providers; thus, it is in their interest to deliver a service with guaranteed
QoS where its potential consumers are located. Current business tendencies in
the ISP market indicate that dominant ISPs are more interested in providing
guaranteed communication level QoS only within their own boundaries to offer
it as competitive differentiator rather than in collaborating with other ISPs to
guarantee QoS over larger areas. Guaranteed QoS over large areas is extremely
difficult to provide because it implies collaboration among several autonomous
organisations; each of them with their own resources, policies and business goals.
Another fact that prevents ISP collaboration is the structure of the relationships
between ISPs. Currently, such structure is approximately hierarchical. Between
tiers, ISPs are in a customer–provider relationship where the higher–tier (let us
say ISPA) is an ISP provider of transport of Internet packets to lower–tier ISPs
(let us say ISPb and ISPc). The higher–tier ISP will often offer its customers
SLAs that include clauses about overall packet treatment. For example, ISPA

will offer ISPb guaranteed level of QoS for the aggregation of packets coming
from ISPb into ISPA and vice–verse. Unfortunately, higher-tier ISPs normally
do not offer SLAs to individual hosts connected to its lower-tier ISPs. The rea-

son for this is that the management overheads are unbearable and the fine grain
mechanisms do not work well. Because of this (following our previous example)
it is entirely possible for a given host connected to ISPb to perceive poor perfor-
mance while ISPA is still, statistically speaking, meetings its obligations with
respect to ISPb. Another fact to take into consideration is that between peer
ISPs there are rarely SLAs. For example, it is very uncommon to see SLAs be-
tween ISPb and ISPc in practice. At the lowest level, ISPs like ISPb and ISPc

will often offer its customers (individual end users, now) explicit service levels,
which typically refer explicitly to delay and loss characteristics at the packet
level. These may be statistical (e.g. the 95% of delay will be 100ms between
customers of this ISP, or the mean packet loss probability will be no more than
10–5), or they may be bounds (no packet delay will be more than 100ms). SLAs
guarantees at the network layer is achieved today typically by network design
(provisioning) and is based on extensive measurement and modelling work; this
is made possible as network providers now understand the typical source be-
haviours, and the typical traffic patterns. With the above arguments in mind,
as suggested in [25], it seems that currently, the most practicable approach that
a provider has to create a point of presence is to share ISPs directly with its
service consumers; again, as argued in [25], a provider can increase its number
of points of presence by means of multi–homing and collocation.

Metric collection Metric collection is at the heart of mechanisms aiming at
monitoring SLAs; it is all about gathering statistical information about some-
body’s activities and involves several issues: (i) Are we using passive (packet
sniffing) or active (packet interception, probe with synthetic operations) metric
collectors? (ii) From what point or points (provider, service consumer or network
in between) are the metrics to be collected? (iii) Who is in charge of collecting
the metrics? (iv) What information can be deducted from the collected metrics?
With these questions in mind and without paying attention to implementation
details, the authors of [25] divide the existing techniques for metric collection
into four general categories:

– Service consumer instrumentation
– Provider instrumentation
– Periodic polling with probe clients
– Network packet collection with request-response reconstruction

From a technical perspective (see [25]) each approach has its pros and cons;
perhaps a more sensitive choice here is that of the entity in charge of collecting
the metrics; this entity has to be a truthworthy, simply because its metrics will
become the main source of evidence to solve a dispute between the provider and
the service consumer whenever a dispute arises; for this reason, several practical
implementation include a trusted third party that collect the metrics, we call
this entity, the measurement service.

An architecture for monitoring non–functional SLAs A generic architec-
ture for monitoring the level of QoS delivered by a provider to a given service

consumer at a given service point of presence ISPi, is suggested in [25]. As shown
in Fig. 3, the point of presence is built by means of ISP sharing between the
provider and the consumer.

ISPi
ISPi

ISP: Internet Service Provider; MeCo: Metric Collector
t1, t2: time intervals.
q: metric (e.g. latency) measured at t1 intervals
c: metric (e.g. No of requests) metric measured at t2 intervals

evaluation and
violation detection

service

measurement
service

probe/measure
q at t1

violation
notification

subscription to
S

LA
s

violation
events

Service
consumeriProvider

MeCo

transfer measures
c at t2

retrieve c and q

MeCo

Fig. 3. Architecture for unilateral monitoring of non–functional SLAs.

Notice that for simplicity only one point of presence and one service consumer
is shown in the figure. However, in a more general scenario, the provider would
have one or more points of presence; each of them with an arbitrary number of
service consumers which will negotiate possibly different QoS and prices with the
provider. Naturally, each provider–service consumer pair will need an instance
of the monitoring infrastructure shown in the figure.

To keep the figure and our discussion simple and without loosing generality,
we assume for the time being that the provision of the service is unilateral, that
is, the service flows only from the provider to the service consumer, as opposite to
bilateral provisioning where the two interacting parties provide services to each
other; bilateral provisioning is a more general scenario and will be discussed
later on in this section. With unilateral service provisioning we need to monitor
the observance of only two contractual obligations: (i) the provider’s obligations,
that dictate that the service must meet certain QoS; and (ii) the service con-
sumer’s obligations, which dictate how the service consumer is expected to use
the service. The contract is not shown in the figure, however, we assume that it
clearly stipulates the QoS at a given point of presence, the metrics that are to
be measured and the frequency of metric collection.

The monitoring mechanism shown in the figure relies on two metric collectors
(MeCo). One of then belongs to the measurement service and is responsible for
monitoring that the provider honours his obligations. Notice that by delegating

this job to a trusted third party the service consumer is free from disturbances
related to metric collection activities. The second MeCo, that deployed inside
the provider monitors that the service consumer meets his obligations.

The specific nature of the metrics to be collected and the collection frequency
depends on the application. In the figure we can imagine that the evaluation
and detection violation service is retrieving the latest n value of the metric c
(number of employees from the service consumer’s logged into the provider at
a given moment of time), and the latest k values of the metric q (latency of an
operation); with these metrics we can compute the latest average latency under
the latest average number of users, with an accuracy that depends on the interval
(t1 and t2 respectively) with which q and c are measured by the measurement
service. Notifications of violations are represented as events. In the figure, these
notifications are sent only to the service consumer; however, these notifications
can be sent to other parties (for example, to the provider) who express interest
by means of subscriptions. The issue about where and how notifications of SLA
violations are processed by the service consumer falls out of the interest of this
work. However, we can briefly mention that such notifications can be caught
by a contract management system that will, after interpreting them, take the
necessary actions, such as sending a complaint note or a penalty bill to the
offender.

In practice, there are applications where the business partners provide a ser-
vice to each other, that is, where distinction between the provider and the service
consumer is blurred. It is not difficult to see that the architecture presented in
the figure can be generalised to work in this more general scenario. A generalisa-
tion of this architecture will result in a figure with four MeCo: a MeCo would be
deployed inside each party to measure the behaviour of its counterpart seen as
a consumer; in addition, two MeCo would be deployed inside the measurement
service to probe and measure the performance of each party seen as a provider.
We believe that this architecture is general enough and recursive in that it can
be placed between any pair of interacting business partners to monitor their
interaction. Naturally, it can be placed between ISPi and the service consumer
of the figure to monitor their interaction.

3.4 Adaptation

In the adaptation stage, the rubber hits the road. Do the agreements provide
the needed information for a system to manage itself automatically? The abil-
ity to adapt a system based on the existing agreements is the key behind the
autonomic and adaptive infrastructure proposals from companies like HP and
IBM, as we will discuss in Section 4. However, in reality, current research and
developments rarely consider automated adaptation as the goal for agreements,
and it can therefore be expected that the current specification languages need
to be modified to appropriately specify all elements needed for automated man-
agement. As an example, trade-off decisions require an understanding of rewards
and penalties, but many agreement specifications ignore such aspects.

Violation detection. An important aspect of self-management is the detec-
tion of agreement violations. In violation detection, the following is required:

– detect diversion from acceptable behaviour
– trigger corrective mechanisms
– solve disputes originated from failures to deliver the expected service

Potentially, once can build such a system as a service, which retrieves metrics
from the databases of the measurement service, performs computation on them,
compares the results of the computation against high or low thresholds and sends
notifications of violations to the interested parties when violations of agreements
are detected. This service then acts as a trusted third party, as we will discuss
in Section 3.5 when we discuss resolution.

Optimisation Modules. Additional adaptation can be achieved by executing
optimisation algorithms that determine what actions to take to adapt the system.
This has been proposed by many authors sometimes based on SLA specifications,
e.g., [1,43,39]. However, none of this has been integrated with a multi-party
software architecture that involves agreements.

A software architecture that wants to deal with optimisation in general must
deal with reliability, scalability, privacy, etc. It is therefore of particular inter-
est to study the implications of distributing optimisation algorithms, both the
mathematical foundations and the system considerations. An excellent first step
to this can be found in recent work by Nowicki et. al. [29].

Self-Management. Optimisation modules as mentioned above provide an
infrastructure for run-time adaptation of systems, but provides no protocols or
message exchange mechanisms to let adaptation ‘emerge’ in the system. Instead,
it provides optimisation outside the system, aiming at a global optimum. In [19]
it is argued that that is no true self-management, and does not resolve the
scalability issues we face in the management of future large-scale systems.

None of the architectures we discuss in Section 4 is concerned with this issue.
That is, none is based on protocols or mechanisms that achieve management
through loosely cooperating, let alone emerging behaviour, as discussed in length
in [44].

3.5 Resolution

The final stage of agreement-based interactions is the termination and after care
of the agreement. Obviously, this is particularly important if there are disputes
to settle between parties. But also in case of undisputed agreements, dismantling
of the monitoring and adaptation software needs to be taken care of, without
introducing security and privacy vulnerabilities. To the best of our knowledge,
no research about dismantling agreements exist, but it is an important issue.

Related is the issue of introducing changes to existing agreements, realised to
be very challenging but not yet much researched. Issues arise about when exactly

the new agreement is considered to be agreed upon, since it is not always possible
to specify a time instant or unambiguously specify the event that determines
the instance the agreement holds. Similar, at what exact moment does the old
agreement terminate, and when and how does one dismantle the monitoring and
adaptation software? A substantial number of issues arise that require practical
solutions.

Trusted Third Party. Many authors have mentioned a trusted third party
as the appropriate way of determining if agreements have been met, e.g., [24].
The term ‘trusted’ implies that all parties involved believe monitoring conducted
by a trusted third party is done correctly, consequently, they consider outcomes
coming from the trusted third party to be authoritative. Based on this idea, one
can imagine business models around trusted third parties that monitor, report
and discover violations. Companies like Keynote and AlertSite.com have started
such businesses, although in a much more static and ad hoc fashion than we
imagine in this paper.

If we add the dynamism that we envision, agreements come and go at fast
page and in large numbers. When third parties are involved additional protocols
are needed to deploy the monitoring software in the third party, exchange data
and pass on warnings and other information to the interested party. In the
architecture for web services management sketched in [24] the need for protocols
has been identified and some candidate protocols have been proposed. Moreover,
protocols are also needed in scenarios in which points of presence spread across
multiple parties (see Section 3.3).

Non-repudiation. Solutions with trusted third parties are a convenient way to
avoid dealing with hard technical problems, which one needs to solve if one wants
to establish trust between partners. With respect to agreement monitoring, there
are at least two sides to trust: can the data that is monitored be trusted to be
correct, and is it non-repudiable.

Non-repudiation in broader terms is the concept of ensuring an agreement
cannot be denied by any of the parties. For instance, using signatures, none of
the parties can claim not to have been involved. Of particular interest is the
recent work of Cook et. al. [9], which introduces trusted interceptors to achieve
non-repudiation. These interceptors insert signatures, and have a protocol for all
parties to agree in non-repudiable way on information updates (e.g., monitoring
data).

4 Existing and Emerging Architectures

Service level agreements are main stay for IP back bone service providers. It is
obvious why this is the case, the service they deliver is fully under their control,
not relying on any third party. As a consequence, such service providers feel that
they are in control of the service they are able to offer. One example is Sprint,

which publishes SLAs as well as measured past performance and availability on
the open web [41]. The used metrics concern delay, jitter, packet loss and data
delivery percentage. For virtual private networks, SLAs are also common place.
They especially make sense if the VPN is owned by a single ISP or one that is
not Internet connected, since then the ISP has full control over the concerned
network. The difficulties in building QoS communication path that expand over
several communication providers is discussed in Section 3.3.

A recent study suggests that SLAs are becoming increasingly prevalent in
outsourcing deals, some bigger companies reporting to have more than one thou-
sand SLAs closed for their outsourced IT [37]. The same article also mentions
that SLA monitoring is still in its infancy, and some times non-existing. Ob-
viously, technologically much progress is still needed, but the service provider
model provides a major (and obvious) push for deployment of SLAs.

In what follows we discuss some important existing and emerging software
solutions for agreements. They are concerned about agreements in a wider sense,
not only to specify service guarantees, but also to keep book on the variety of
interactions and to enable automated decision-making.

Fig. 4. View of WS-Agreement contents and layering.

4.1 Global Grid Forum

Web Services are becoming a popular infrastructure for developing distributed
systems, particularly in wide-area networks such as the Internet. One of the

distinguishing features of Web Services is the large number of activities hosted
in standards bodies defining specific functions which can be combined to create
an extremely rich environment. Agreements have become a part of this suite via
the WS-Agreement specification which has been developed within the Global
Grid Forum.

WS-Agreement defines a structure into which an arbitrary set of agreement
terms may be placed. The key point is that agreements need not be about any
specific type of service (such as a web service), and so can be created and main-
tained independently of other services. This, in turn, implies that existing service
infrastructures need not be changed to introduce agreements. This imposes the
layered model shown in Fig. 4. The service layer on the bottom represents the
service which is the subject of the agreement. The WS-Agreement model does
not change this interaction because the agreement is created, managed, and mon-
itored at a separate logical-layer. One can view an agreement in two ways: as a
document or as a service. In the document view, WS-Agreement defines an XML
Schema which specifies the components of an agreement. In the service view, an
agreement is itself a service which can be monitored and managed in the same
way that other services interact with one another. Ultimately, the monitoring
infrastructure is likely to have the same architecture as those defined in previous
sections.

WS-Agreement Contents The agreement document contains the following
sub-sections which are also shown in Fig. 4.

– A Context contains immutable properties of the agreement as a whole. These
include who the provider and consumer of the agreement are, a completion
time for the agreement, and references to other agreements which may be
related to this one. Related agreements can be used in many ways. One use is
to refer to other agreements that are held simultaneously with this agreement
to define a larger aggregate agreement. Another is to allow to parties to form
a long standing agreement with shorter term, sub-agreements defined for a
specific interaction at a particular point in time. WS-Agreement currently
does not provide any specifics for how these multi-agreement relationships
are formed, specified or monitored.

– Service Description Terms describe the service to which the agreement refers.
WS-Agreement does not specify the content of them, so they can contain
any arbitrary XML schema. In the most simple case, a description term
may contain only a reference to an existing service to which the agreement
applies. In other cases, these terms could provide detailed specifications of
the functional properties for the service to which the agreement will apply.
In these cases, it will be common for a new service to be created which
conforms to these property definitions.

– Guarantee Terms define the non-functional properties of the agreement. Like
the service description terms, WS-Agreement does not specify what the con-
tents of the guarantee terms are, but it is expected that they contain enough
information that a monitoring system could be configured to enforce the

properties of the agreement. In addition to the non-functional properties,
guarantee terms may also contain clauses referred to as “business value”
that contain rewards or penalties based on a service provider succeeding or
failing in meeting the guarantees.

– Constraints are used to narrow the possible values for either the service de-
scription or guarantee terms. These are placed into an agreement document
called a template which can be published to define a providers agreement
options. The use of templates is described in more detail below.

– All of the terms are grouped by a compositor. The compositor groups the
terms, and provides a logical relationship for those terms. The relationships
are: “all of,” “exactly one of,” or “at least one of.” Compositors therefore
allow for alternative choices within the agreement document. When paired
with guarantee terms and business values, this allows a single agreement
document to define multiple, acceptable of Service-Levels with correspond-
ing rewards. Compositors can be nested within one another providing an
extremely rich structure of alternative and required service description or
guarantee terms.

Fig. 5. Message exchanges in WS Agreement.

WS-Agreement workflow The WS-Agreement specification defines a simple
workflow for the advertisement, creation and monitoring of agreements. It is an-
ticipated that these basic functions could be combined to perform more complex
interactions such as brokering or negotiation though no specific protocols are
presently defined. The basic message exchanges are shown in Fig 5.

The interchange begins when an initiator requests a template document from
an agreement provider. This template effectively defines the structure of the
agreement it supports by defining the terms and their compositor structure. The
template also gives hints to the initiator about acceptable values for those terms
via the constraints described previously. In some cases, this template could be
generated in response to each request, so the constraints could be used to reflect
the current state of the provider.

Upon receiving the template, it is up to the initiator to fill in values for
the terms which described the desired agreement. It then sends the proposed
agreement document to the provider as a create request. The provider can then
accept the agreement in which case it returns a positive acknowledgement which
also contains a handle to the agreement for use in monitoring. This handle
provides a means of interacting with the agreement as a first-class service in
a web services environment. If the agreement cannot be reached, an error is
returned.

The initiator can use the handle for the agreement to monitor its state. This
may be through requests to get an updated version of the agreement document
where term values are filled in to represent the current state of the agreement.
For example, a guarantee term that specifies the performance level may be filled
in with the most recently measured performance observation.

Status The first version of the WS-Agreement specification is complete. It has
been authored by participants from IBM, Globus, Platform computing and HP,
and has entered the public comment period at the GGF at the time of this
writing. The GGF working group which developed WS-Agreement is presently
working toward defining higher-levels of functionality on top of WS-Agreement
such as more complex negotiation protocols, definition of basic guarantee terms
which are widely reusable, and possibly profiles for specific interaction models
such as brokering or auctioning.

4.2 Industrial Developments: HP and IBM

In addition to the above-mentioned network industry, agreements also play an
increasingly important role in enterprise IT. Moreover, this area dominates the
research and development in software architectures, as we discuss by focussing
on two major enterprise IT companies, namely Hewlett-Packard and IBM.

Hewlett-Packard. Since the early nineties, Hewlett-Packard has been a (the)
leading management software vendor through its OpenView products [28]. Open-
View predominantly focuses on monitoring and visualisation of IT operations.
Over the years, the software has consistently moved ‘up the stack,’ expanding
the network monitoring functionality to include system and service monitoring.
The primary user target for this software are IT administrators and data center
operators.

Service level agreements [32] have been part of monitoring software such
as OpenView (other examples are Computer Associates, IBM Tivoli and BMC
Software for a long time. In a typical setting, an administrator would use SLA
thresholds to allow alarms to be triggered when performance deteriorated. If the
metrics are chosen wisely (that is, based on service or even business considera-
tions), one can argue that the SLAs assist in monitoring and assuring higher level
management goals. These ideas are illustrated well by the NetGather enhance-
ments of OpenView from software vendor ProdexNet [35]. However, in reality
the use of SLAs is often restricted to some of the more obvious metrics, such as
basic performance and reliability metrics. Moreover, the level of automation to
deal with SLA violations is limited, mainly targeting the triggering of alarms.

Such use of SLAs is widespread in all existing management software but is of
limited consequences to the exploited software architecture. In particular, pow-
erfully expressive SLA languages are not needed if the metrics differ little across
customers, nor are highly effective adaptation algorithms needed if the main
objective is to alarm the administrator in time. However, this has dramatically
changed with HP’s introduction of its adaptive infrastructure software strategy.

HP’s adaptive infrastructure envisions that future IT is flexible enough to
adapt to any form of change, from newly arriving customers to failing equip-
ment, from changing business environments to sharing resource ownership. To
allow for such flexibility, the proposed software architecture has three main char-
acteristics: virtualisation, service-orientation and automation [44]. Virtualisation
enables adaptation by substituting hardware-implemented and hardcoded be-
haviour with software implemented adaptive solutions. Service-orientation based
on web services is needed for standards-based interoperability, hiding of hetero-
geneity, scalability and software reuse. Automation is needed to deliver on the
promises of the adaptive infrastructure without having to involve prohibitively
many highly-educated technicians.

One can read more about these ideas in [44], or in the many web pages
published by HP. HP has chosen to pursue Grid and web service standards as
underpinning of the adaptive infrastructure and is leading research and working
groups in GGF [2], chairs the organisation itself, and was instrumental in creating
the link between web services and grid standards through their introduction of
GGF recommendations with web services proposals in the OASIS web services
distributed management working group [30]. Recently, HP moved from their
monolithic and sizable utility data center product (discontinued in 2004) to
new lighter weight adaptive infrastructure offerings based on acquired start-up
technologies [31] and research efforts [20].

Within the context of the adaptive enterprise, the main focus with respect
to agreements is on the work in the WS Agreement working group, co-chaired
by HP. A detailed description can be found in Section 4.1.

IBM IBM software strategy is centered around the notion of autonomic com-
puting [18,7]. Autonomic computing suggest that computing systems have capa-
bilities to recover from failures in ways not unlike the human body: locally initi-

ated and emergent (that is, not dictated by a ‘big brother’ style decision-making
module). The main driver for autonomic computing is to limit the amount of
personnel needed to run the infrastructure: human involvement in IT manage-
ment is expensive and error prone. Part of the autonomic computing strategy
is a focus on on-demand computing and federation through open, standardised
web services.

The technology push from IBM is very similar to that from HP. HP’s adaptive
infrastructure (discussed in the previous section) is in spirit and in fact similar
to IBM’s autonomic computing, and utility computing is largely identical to
on-demand computing. Also the business models of the two companies align:
from a traditional product focus, the attention is increasingly on services for
IT operations, delivered by consultants, very often through ‘outsourcing’ deals.
Also from this business perspective the push for automation and on-demand
computing models fits nicely, since it makes IT management less expensive

With respect to software architectures, IBM focuses on web services and
GGF grid technologies, implemented through open source prototypes or on top
of IBM’s Websphere J2EE compliant application server. The work described in
Section 4.1 on WS Agreement is heavily influenced by IBM’s involvement. In
particular, the proposed specification language WSLA, discussed in Section 3.1,
in now being modified to be incorporated in the WS Agreement proposals. In
other words, IBM is an important driver to make reality the role of agreements
suggested in this paper.

4.3 Academic Research: TAPAS

TAPAS (Trusted and QoS–Aware Provision of Application Services) is an on–
going research project sponsored by the European Commission. The overall ob-
jective of the project is to develop novel methods, tools, algorithms and protocols
that support the construction and provisioning of Internet application services
with guaranteed levels of QoS. An Internet application service in the TAPAS
context is a service of an arbitrary nature (hosting, storage, auctioning, credit
rating, stock marketing, etc.) offered to one or more customers simultaneously,
over the Internet. TAPAS is relevant to the central topic of our discussion be-
cause its developers consider SLAs absolutely crucial to achieve TAPAS overall
objective; consequently, one of the aims of the project is to develop QoS en-
abled middleware capable of meeting SLAs between pairs of interacting parties
at different levels.

In TAPAS business scenario a service provider provides its services to several
consumers whose access to the service might overlap. The services required by
each client are not necessarily the same; neither are the SLAs that they require.
As shown in Fig. 6, TAPAS assumes that the service owner is in control of
a pool of resources (R1, R2, ..., Rm) that he uses to build the services that its
consumers require; examples of these resources are cpu, disks, database, servers,
etc. Though not explicitly shown in the figure, it is assumed that some of the
resources are owned by the service owner, whereas other are hired from other
providers though the Internet.

An important assumption in TAPAS is that interacting parties are mutually
suspicious and reluctant to engage in business interactions unguarded, because
of this, interactions are regulated by legal contracts signed by the interacting
parties. Thus, though for the sake of simplicity only one contract is shown in the
figure, it should be assumed that the service owner is involved in n contracts,
one with each consumer. As shown in the figure, the expectation here is that the
legal contract will contain, in addition to conventional contract headers, a list
of functional and a list of non–functional requirements, that describe in conven-
tional English prose, the rights and the obligations that the interacting parties
are expected to honour. A strong assumption in TAPAS is that SLAs are con-
sidered useful if their compliance is monitored and enforced by computer means
at run time; this requirement has a significant impact in TAPAS middleware.

The challenge for the service owner is to manage his resources in order to
guarantee that the contracted SLAs with his customers are met. TAPAS de-
signer based their solution in the concepts of SLAs specification, monitoring,
adaptation, dispute resolution and so on, discussed earlier in this paper. In the
following sections we will discuss how these concepts were realised in the TAPAS
project.

InternetInternet

Contract
Service description:
The service provider (SP) will provide
1 GByte of storage to the service con-
sumer (SC) for 6 months …

II) Functional requirements
1.1 The service consumer shall pay his
bill monthly by the 10th of the following
month.
1.2 The service owner shall send his bill
by the 5th day of the month.

III) Non-functional requirement
1.1 Response time shall be less than …
1.2 Max time to repair shall be less than
5 min on working days between
08 and 21 hs.

Signature Signature
(service owner) (service consumer1)

service owner

service consumer1

service consumern

service

R1 R2 Rm

resources

Fig. 6. TAPAS business model showing a provider and consumers.

4.4 TAPAS architecture

A module architecture of the TAPAS platform is shown in Fig. 7.
The figure shows the main features of the TAPAS architecture. If we ignore

the three shaded/patterned entities (these are TAPAS specific components), then

COMPONENT MIDDLEWARE

QoS management, monitoring and adaptation

Inter-organisational
interaction
regulation

QoS monitoring
and

violation detection

APPLICATIONS

QoS enabled
application
server

Fig. 7. TAPAS architecture showing its main building components.

we have a fairly ’standard’ application hosting environment, that is, an appli-
cation server constructed using component middleware (e.g., J2EE application
server). It is the inclusion of the shaded/patterned entities that makes all the
difference.

Inter–organisation interaction regulation This module represents the
middleware that guarantees that the functional SLAs between two inter-
acting parties are monitored and possibly, enforced, when a violation is de-
tected. For example, for auction applications, it will guarantee that bidders
place bid only when bid rounds are declared open. The current version of
TAPAS, realises this module as Finite State Machines (FSM) that model the
functional SLAs of the original legal contract. Conceptually speaking, this
module is located between the two interacting parties to intercept messages
exchanged between the interacting parties and prevent the ones that divert
from the expected sequence, from reaching the receiving business partner.

QoS monitoring and violation detection This module represents the mid-
dleware that guarantees that the non–functional SLAs between two interact-
ing parties are monitored and notifications are sent to the interesting parties,
when a violation is detected. For example, for auction applications, it will
guarantee that response time to a ’PlaceBid’ operation is no longer than
what it is stipulated in the original legal contract. In the current version
of TAPAS, this module is realised as trusted third parties that periodically
probe the provider to collect metrics about his performance; in the same
order, SLAs are specified in SLAng (see Section3.1) to reduce the level of
ambiguity.

QoS management, monitoring and adaptation This module represents
the middleware to convert conventional application services into QoS en-
abled ones. For example, this module will contain all the necessary logic
to locally monitor the performance that the application service delivers to
each customer and the performance of the resource used for building the
service; likewise, it will contain algorithms for comparison, tuning, optimi-
sation and adaptation. Current version of TAPAS implements this module
as an adaptive clustering mechanism that incorporates QoS awareness into

the application service. The current environment consists of a set of Linux
computers running instances of the JBoss application server.

It is worth emphasising that, besides the existence of some relationships be-
tween the three modules discussed above, their functionality is fairly independent
in the sense that a given application does not necessarily need to implement the
three modules together; for example, it is conceivable that, to save costs, in an
auction application a bidder prefer to exclude non–functional SLAs from his
contract; similarly, it is quite possible that a provider in possession of a large
number of resources might opt for over provisioning rather than paying for the
cost of implementing and running the QoS monitoring and violation detection
module.

5 Conclusion

This paper surveys the state of the art in technologies for agreements, with an
emphasis on the implications for the software architectures. Agreements form the
basis for advanced forms of automated management that adapt systems to op-
timise business objectives, deals with conflict resolutions between partners, and
offers non-repudiable evidence for agreement breaches. However, as we point out
in the paper, many pieces must come together to achieve such advanced func-
tionality, from agreement specification, automated provision of resources, moni-
toring and adaptation, to resolution of conflicts. The amount of attention paid
to software support for agreements is promising, and we reviewed the advances
in standards bodies, industry and academia. However, much research remains to
make practical the promise of agreement-based automated system and operation
management.

References

1. G. Alvarez, E. Borowsky, S. Go, T. Romer, R. Becker-Szendy, R. Golding, A.
Merchant, M. Spasojevic, A. Veitch, J. Wilkes, “Minerva: an automated resource
provisioning tool for large-scale storage systems,” ACM Transactions on Computer
Systems 19(4):483-518, Nov. 2001.

2. Andrieux et. al., Web-Services Agreement Specification (WS-
Agreement), Recommendation track document of the Global Grid
Forum, https://forge.gridforum.org/projects/graap-wg/document/WS-
AgreementSpecificationDraft.doc.

3. K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalanter, S. Krishnakumar,
and D. P. Pazel, J. Pershing,and B. Rochwerger, Oceano–SLA Based Management
of a Computing Utility, Proceedings of the 7th IFIP/IEEE International Sympo-
sium on Integrated Network Management, 2001.

4. Algirdas Avizienis, Jean–Claude Laprie, Brian Randell and Carl Landwehr, Basic
Concepts and Taxonomy of Dependable and Secure Computing, IEEE Transac-
tions on Dependable and Secure Computing, Vol. 1, Nr. 1, pp. 11–33, 2004.

5. C. Bartolini, A. Boulmakou, A. Christodoulou, A. Farrell, M. Salle
and D. Trastour, Management by Contract: IT Management driven
by Business Objectives, HP Labs Technical Report, HPL-2004-184,
http://www.hpl.hp.com/techreports/2004/HPL-2004-184.html, 2004.

6. M. Bearden, S. Garg, W.-J. Lee, A. van Moorsel, “User-Centric QoS Policies, or
Saying What and How,” 11th IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management (DSOM 2000), work in progress session,
Austin, Texas, USA, Dec. 4-6, 2000.

7. Bloor Research, The Grid Report: The Commercial Implications of the Conver-
gence of Grid Computing, Web Services, and Self-Managing Systems, Bloor Re-
search North America, August, 2002.

8. Marjory S. Blumenthal and David D. Clark, Rethinking the Design of the Internet:
The End–to–End Arguments vs. the Brave World, ACM Transactions on Internet
Technology, Vol. 1, Nr. 1, Aug, 2001.

9. Cook, N.O., Robinson, P. and Shrivastava, S.K., Component Middleware to Sup-
port Non-repudiable Service Interactions, In Proc. IEEE Int. Conf. on Dependable
Systems and Networks (DSN 2004), Florence, Italy, 28 Jun.-1 Jul. 2004

10. Karl Czajkowski, Ian Foster, Carl Kesselman, Volker Sander, Steven Tuecke SNAP:
A Protocol for Negotiating Service Level Agreements and Coordinating Resource
Management in Distributed Systems 8th Workshop on Job Scheduling Strategies
for Parallel Processing,Edinburgh Scotland, July 2002

11. A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan,
M. Spreitzer, A. Youssef, Web Services On Demand: WSLA-Driven Automated
Management, IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004.

12. Yixin Diao, Frank Eskesen, Steven Froehlich, Joseph L. Hellerstein, Alexander
Keller, Lisa F. Spainhower, Maheswaran Surendra, “GENERIC ON-LINE DIS-
COVERY OF QUANTITATIVE MODELS FOR SERVICE LEVEL MANAGE-
MENT”, in proceedings of IEEE Conference on Integrated Management, 2003.

13. A. Farrell, D. Trastour, A. Christodoulou, Performance Monitoring of Service Level
Agreements for Utility Computing using the Event Calculus, HP Labs Technical
Report, HPL-2004-20, 2004.

14. S. Frolund, J. Koistinen, “Quality-of-Service Specification in Distributed Object
Systems”, Distributed Systems Engineering Journal, Vol. 5, No. 4, Dec. 1998.

15. Global Grid Forum Home Page, http://www.ggf.org.

16. P. Goldsack, J. Guijarro, A. Lain, G. Mecheneau, P. Murray and P. Toft, Smart-
Frog: Configuration and Automatic Ignition of Distributed Applications, 10th
OpenView University Association workshop, Geneva, June 2003.

17. Grid Resource Allocation Agreement Protocol (GRAAP) Working Group:
http://forge.gridforum.org/projects/graap-wg.

18. P. Horn, Autonomic Computing: IBMs Perspective on the State of Information
Technology, IBM, USA, 2002. (Available at http://www.research.ibm.com.)

19. M. Jelasity, A. Montresor and O. Babaoglu, “Grassroot Self-Management: A Mod-
ular Approach,” in International Workshop on Self-* Properties in Complex Infor-
mation Systems, Bertinoro, Italy, pp. 85–88, May 2004.

20. M. Kallahalla, M. Uysal, R. Swaminathan, D. Lowell, M. Wray, T. Christian, N.
Edwards, C. Dalton, F. Gittler, “SoftUDC: A Software-Based Data Center for
Utility Computing”, IEEE Computer, Vol. 37, No. 11, pp.38–47, 2004.

21. Katarzyna Keahey, Takuya Araki, Peter Lane “Agreement-Based Interactions for
Experimental Science”, in: Proceedings of the EuroPar, 2004.

22. D. D. Lamanna, J. Skene and W. Emmerich, SLAng: A Language for Service Level
Agreements, In Proc. of the 9th IEEE Workshop on Future Trends in Distributed
Computing Systems pp. 100–106. IEEE Computer Society Press, 2001.

23. Heiko Ludwig, Alexander Keller, Asit Dan, Richard P. King, Richard
Franck, Web Service Level Agreement (WSLA) Language Specifica-
tion, Version 1.0, Revision wsla–2003/01/28 IBM Research Web page,
http://www.research.ibm.com/wsla/documents.html, 2003.

24. V. Machiraju, A. Sahai and A. van Moorsel, Web Services Management Network:
An Overlay Network for Federated Service Management, Kluwer, Proceedings of In-
ternational Symposium on Integrated Network Management, IM2003, March 2003.

25. Carlos Molina–Jimenez, Santosh Shrivastava, Jon Crowcroft and Panos Gevros,
On the Monitoring of Contractual Service Level Agreements, The First IEEE In-
ternational Workshop on Electronic Contracting (WEC), San Diego, 6th Jul 2004.

26. C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and J. Warne, Run-time Monitor-
ing and Enforcement of Electronic Contracts, Electronic Commerce Research and
Applications, Elsevier, 3(2), pp 108-125, 2004.

27. Andrew Moore, James Hall, Christian Kreibich, Euan Harris and Ian Pratt, Archi-
tecture of a Network Monitor, Proc. The Passive and Active Measurement Work-
shop, La Jolla California, Apr. 6-8, 2003.

28. N. Muller, Focus on OpenView: A Guide to Hewlett-Packard’s Network and Sys-
tems Management Platform, CBM Books, USA, 1996.

29. T. Nowicki, M. Squillante, C. W. Wu, “Fundamentals of Dynamic Decentralized
Optimization in Autonomic Computing Systems,” to be published in Lecture Notes
in Computer Science, Self-* Properties in Complex Information Systems, Springer
Verlag, 2005.

30. OASIS Web Services Distributed Management Technical Committee (WSDM),
http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsdm.

31. OpenView Automation Manager,
http://managementsoftware.hp.com/solutions/server/demo 0001 transcript.html.

32. OpenView Service Desk SLA management product,
http://www.managementsoftware.hp.com/products/sdesk

33. Marcelo Pias and Steve Wilbur, EdgeMeter: Distributed Network metering, Proc.
Int’l IEEE Openarch Conf., short paper session, Anchorage, Alaska, Apr., 2001.

34. Panita Pongpaibool and Hyong S. Kim, Providing end–to–end service level agree-
ments across multiple ISP networks, Computer Networks, Vol. 46, Issue 1, pp.3–18,
Sep, 2004.

35. ProdexNet, independent software vendor, http://www.prodexnet.com.
36. Pruyne, Jim; Machiraju, Vijay Quartermaster: Grid Services for Data Center Re-

source Reservation HPL Technical Report, HPL-2003-228
37. B. Rosenthal, “A Surprising New Study: SLAs Now Have Teeth,” Out-

sourcingSLA.com, http://www.outsourcing-sla.com/surprising.html.
38. A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel, F. Casati, Automated SLA Mon-

itoring for Web Services, 13th IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management: Management Technologies for E-Commerce
and E-Business Applications, Springer Verlag, pp. 28 41, 2002.

39. C. Santos, X. Zhu, H. Crowder, A Mathematical Optimization Approach for Re-
source Allocation in Large Scale Data Centers HP Laboratories, Technical Report,
HPL-2002-64R1, 2002.

40. James Skene, D. Davide Lamanna and Wolfgang Emmerich, Precise Service Level
Agreements, Proceedings of the 26th International Conference on Software Engi-
neering (ICSE’04), 2004.

41. Sprint back bone SLAs and measured metrics are available at
http://www.sprint.com/business/support/serviceLevelAgreements.jsp.

42. Vladimir Tosic, Bernard Pagurek, Kruti Patel, Babak Esfandiari and Wei Ma,
Management applications of the Web Service Offerings Language (WSOL), Infor-
mation Systems, In Press, Corrected Proof, Available online 24 December 2004.

43. A. van Moorsel, “The ‘QoS Query Service’ for Improved Quality-of-Service Deci-
sion Making in CORBA,” Symposium on Reliable Distributed Systems, Lausanne,
Switzerland, Oct. 1999.

44. A. van Moorsel, Grid, Management and Self-Management, The Computer Journal,
to appear, 2005.

45. David Watson, G. Rober Malan and Farnam Jahanian, An extensible probe ar-
chitecture for network protocol performance measurement, Software Practice and
Experience, Vol. 34, 2004.

46. A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A.
Huynh, M. Carlson, J. Perry, S. Waldbusser, IETF request for Comments RFC
3198, http://www.ietf.org/rfc/rfc3198.txt, 2001.

