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Introduction

This Report describes the architecture of the TAPAS middleware platform that will be
developed as part of the TAPAS project. This architecture consists of a collection of middleware
services that extend the abstraction of application server, as provided by current middleware
technologies, such as the CORBA Component Model and Java 2 Enterprise Edition (J2EE), in
order to meet Quality of Service (QoS) application requirements, such as performance,
reliability, and security. The motivations for this architecture can be summarized as follows.

Current component-oriented technologies allow designers to construct distributed applications
out of reusable and interoperable software components (e.g., commercial operating systems,
communication protocols, middleware services). These technologies support the specification of
the functional component interfaces; however, they support only partially the definition of non-
functional properties (i.e., the QoS) of the component execution.

These technologies promote the use of containers to host application component instances.
Specifically, a container provides the run time environment for those instances, and shields them
from the complexity of most of the system services, such as the transaction, security,
persistence, and notification services.  Hence, containers take part in the management of the
non-functional properties of the components they host.

Several containers can be hosted by the same application server; thus, QoS negotiation,
establishment, and adaptation facilities can be added to the application server and used by
component containers to make them QoS-aware.

These facilities are implemented in the TAPAS middleware architecture by two principal
middleware services, named Configuration Service and Controller Service, respectively, that can
be used to extend an application server. The former service is responsible for discovering,
negotiating, and reserving the resources necessary to meet the QoS requirements of a particular
application component, hosted by that application server; the latter service is responsible for
monitoring the reserved resources,  and possibly adapting the component execution in case the
QoS delivered by these resources deviates from that required by the component itself.

The TAPAS architecture described in this Report uses Service Level Agreements (SLAs), as
discussed in the TAPAS deliverable D1 [Beckman et al. 2002], in order to derive the QoS
application component requirements, and monitor the delivered QoS at the component run time.
Thus, SLAs, in the TAPAS architecture, are used not only as an inter-organizational contractual
feature, but also to govern the component execution.

In order to define the TAPAS architecture, we have carried out an extensive assessment of the
current state of the art in the design of architectures developed to meet QoS requirements of
distributed applications. From this assessment it has emerged that none of the architectures we
have examined fully meet the TAPAS objectives; however, this assessment has allowed us to
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derive a number of recommendations and design principles we have deployed in the definition
of our architecture. These include both such recommendations as the need for incorporating a
resource monitoring service in our architecture, in order to assess the resource state at run time,
as well as design principles such as those that can be derived from the control theory [Ferrari G.
2002] in order to deploy adaptation facilities.

Further, we have examined two use cases (namely, the hosting of a generic application by an
Application Service Provider, and that of specific auction application) in order to expose specific
requirements the TAPAS architecture has to meet. As a result of this activity, we have identified
a detailed set of functionalities our architecture is to incorporate in order to meet its objectives.

We have then studied how to integrate these functionalities in existing component-based
middleware platforms. Specifically, we have examined the integration of these functionalities
within the J2EE application server, and their instantiation within two specific implementations of
the J2EE platform; namely, Jboss [JBOSS 2003] and JOnAS [JONAS 2003]. In addition, in
this context, we have examined how the proposed TAPAS architecture would enable the
deployment of a specific replication technology, such as that described in [Morgan et al., 2002]
(attached to this Report).

This Report is structured as follows. In the next Section we discuss our state of the art
assessment of QoS architectures. In Section 3 we introduce the two use cases mentioned above,
and discuss the functionalities the architecture we propose incorporates. Section 4 describes
how these functionalities can be integrated in the J2EE platform, and discusses the deployment
of the replication technology described in [Morgan et al., 2002]. Finally, Section 5 concludes
this Report.

2 End-to-end QoS Architectures

QoS has been defined as “A set of quality requirements on the collective behaviour of one or
more objects” [ITU/ISO 1995]. Specifically, in the distributed multimedia context, it has been
defined as “The set of those quantitative and qualitative characteristics of a distributed
multimedia system that are necessary in order to achieve the required functionality of an
application” [Vogel et al. 1995].

At the low levels of a distributed system architecture, QoS refers to the ability of the network to
deliver the most appropriate communication service that can deal effectively with specific data
traffic requirements (e.g., constant bit rate, variable bit rate). Thus, issues of QoS have been
addressed principally in the design of communication protocols and mechanisms that allow the
programmer to control such communication parameters as network throughput, packet delay,
delay jitter, and packet loss (e.g. RSVP [Braden et al. 1997], IntServ [Braden et al. 1994],
DiffServ [Carson et al. 1998]) over QoS-enabled communication technologies, such as ATM
(Asynchronous Transfer Model) and SONET (Synchronous Optical Network)  [Lodi 2002].

These parameters indeed affect the user-perceived QoS of a distributed application; however,
further QoS requirements emerge at the application level, as pointed out in [Ferrari 1998], which
are generally related the non functional properties of the applications themselves. Specifically,
these may include performance oriented requirements, such as timeliness of execution and
relative processing speed; reliability oriented requirements, such as high-availability and failure
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recovery; security oriented requirements, such as authentication, privacy, anonymity and
confidentiality. As these requirements pertain to the distributed application components (and the
end-systems hosting these components) at the end points of a communication subsystem, they
are termed “end-to-end QoS requirements”.

Note that these requirements cannot be fully met at the communication subsystem level, as they
fall outside the scope and responsibility of this level (rather, this level provides support which
can be crucial in order to meet them). For example, the implementation of a highly available
distributed filing service can typically require that both reliable communications be provided at
the communication subsystem level, and appropriate service replication techniques be deployed
at the application level, as these replication techniques concern strictly the distributed filing
service architecture using the communication subsystem.

Owing to the above observation, end-to-end QoS can be thought of as a pervasive system
property, as depicted in Figure 1 below, which is to be preserved by orchestrating carefully the
cooperation among both the distributed application components (and their hosting end-
systems), and the communication subsystem.

Fig. 1: End-to-End QoS

In general, the QoS required from a given system can be expressed as a collection of
<parameter-value> pairs. Each parameter can be considered as a typed variable whose value can
range in a given set. In a large scale distributed context, such as that enabled by the current
Internet technology, QoS communication parameters apply to low level network protocols, as
mentioned above, and may not be under the control of the application.  

In one such context, lack of control of these parameters may exacerbate the complexity of
meeting QoS application requirements. Specifically, over the Internet, this complexity arises
principally from the IP-based best effort communication service model, currently available over
this network. Namely, within this model: (i) applications do not have the ability to reserve
bandwidth, and (ii) there is no means to exercise control over the network resources (i.e., no
admission control policy is implemented).
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This model is indeed adequate for traditional applications such as FTP and e-mail, as these
applications are not influenced notably by the delays that the network can introduce in
delivering the information; however, it is inadequate for those distributed applications in which
the perceived latency (i.e., the response time) dominates the application performance. These
include soft real-time applications, such as IP telephony applications, as well as interactive
distributed applications such as multi-party games over the Internet, or applications
implementing Web access to multimedia data (note that these latter applications may not have to
meet hard real-time requirements, although they typically exhibit specific latency requirements
which may range between a minimum and a maximum level [Ghini 2002]).

In particular, in an Internet based distributed scenario, the availability of the communication
resources may dynamically change during the execution of an application; hence, in order to
maintain the expected QoS levels, that application requires that monitoring and adaptation
mechanisms be available, so as to cope with possible fluctuations of resource availability.

In order to address these issues, in recent years a large body of research has investigated the
design and development of so-called end-to-end QoS architectures, aimed at providing
platforms that support effectively distributed applications characterized by end-to-end QoS
requirements.

Relevant examples of these architectures include the QoS Broker [Nahrstedt & Smith 1995],
RT CORBA [Fay et al. 1997]), TAO [Schmidt et al. 1997], QuO [Zinky et al. 1997], Agilos
[Baochun 2000], the Real-Time Specification for Java (RTSJ) [Bollella & Gosling 2000,
ControlWare [Zhang et al. 2002], the AMIDST [Bergmans et al. 2002], the Policy Based
System [Kakadia 2000], and, finally, the QoS Controller architecture for e-commerce sites
[Menasce’ et al. 2001]. In the following Subsections we examine these architectures in detail.

2.1 The QoS Broker

The QoS Broker [Nahrstedt & Smith 1995] has been developed in order to support distributed
multimedia applications (DMMAs) in synchronous (i.e. characterized by predictable delays)
communication environments (e.g. ATM networks). Its principal responsibility consists of
configuring the communication subsystem in order to transmit flows of multimedia data in a
guaranteed manner.

To this end, the QoS broker (i) cooperates with both the local OS and the communication
subsystem in order to achieve a balance among DMMA QoS requirements, local OS resources,
and network resources, and (ii) negotiates the use of remote resources with the remote QoS
brokers. The QoS broker can be implemented as an extension of the communication subsystem
software, as illustrated in Figure 2, below.

It is structured in two principal components; namely, the broker buyer and the broker seller.
The broker buyer orchestrates local resources, and gathers information about network and
remote resources from the sellers. The seller waits for requests form buyers, and negotiates
both network parameters, and local resources.
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Fig. 2: QoS Broker Architecture

2.2 Real-Time CORBA

RT CORBA is a standard architecture for real-time management of distributed objects; this
architecture has been developed in order to support fixed-priority CORBA applications [Fay et
al. 1997].

RT CORBA prescribes a number of functionalities that must be integrated and managed by
ORB end-systems in order to ensure the predictable behavior of the activities carried out by
CORBA clients and servers [Schmidt & Kuhns 2000].

The above mentioned functionalities include:

• Communication infrastructure resource management: a RT CORBA end-system    
must exploit policies and mechanisms in the underlying communication infrastructure
that support resource guarantees.

• OS scheduling mechanisms: the RT-CORBA specification is targeted to operating
systems that allow applications to specify scheduling priorities and policies.

• Real-Time ORB end-system: a real-time ORB end system must provide applications
with standard interfaces that allow these applications to specify their resource
requirements.

• Real-Time services and applications: Real-Time CORBA ORBs must guarantee
efficient, scalable and predictable behavior of higher-level services and application
components.

In order to manage these functionalities, RT CORBA defines standard interfaces and QoS
policies that improve an application's ability to configure and control (i) the processor resources
through pools of threads, priority mechanisms, intra-process mutual exclusion mechanisms and
a global scheduling service, (ii) the communication resources via protocol properties and explicit
bindings of clients to servers and (iii) the memory resources via request queues and bounded
thread pools.



8

In essence, RT-CORBA specifies a set of relevant features that allow the application to control
thread priorities and scheduling; however, it does not provide high level primitives for
constructing adaptive QoS management mechanisms.

2.2.1 TAO

TAO is an open-source high performance RT-CORBA-compliant ORB. TAO implements a
rich set of middleware mechanisms that can support applications with both deterministic and
statistical QoS requirements, and applications with best-effort requirements.

This ORB consists of the following four major components that provide applications with end-
to-end QoS guarantees:

• ORB: this component supports real-time by optimizing (i) code generation, and (ii) the
use of system components such as the memory management system, and the network
protocols.

• Scheduling Service: this service provides the applications with real-time scheduling of
client requests, and supports both static scheduling, based on off-line schedulability
analysis, and dynamic scheduling, via admission control policies.

• Event Service: this service implements real-time scheduling of CORBA events, and
provides filtering and correlation mechanisms that allow consumers to select the events
they receive.

• Real-Time I/O (RIO) subsystem: this subsystem runs in the OS kernel and is designed
to take advantage of ATM network features.

It is worth observing that programming TAO's low level real-time mechanisms, in order to meet
specific end-to-end QoS requirements, can be complex and error-prone, particularly for large-
scale, QoS-enabled distributed applications. Therefore, higher-level middleware capabilities for
end-to-end QoS specification and control are required. In order to meet these requirements, a
complementary architectural framework, called Quality Objects (QuO), has been developed.
This framework is introduced below.

2.2.2 QuO

QuO is a framework designed to support the development of distributed applications
characterized by QoS requirements [Loyall et al. 1998]. It provides the application designer
with the ability to i) specify, monitor, and control QoS aspects of a distributed object
application, and ii) define and implement application adaptation mechanisms that must be
enabled in response to changing system conditions (e.g., an intrusion aware application
detecting an attack to a server object may decide to break the connection to that server, locate a
server that has not been attacked, and reconfigure itself to use that latter server).

In the QuO framework, a method call made by a client on a remote object, through its functional
interface, is a superset of a traditional CORBA call. This superset includes the additional
components itemized below, and depicted in Figure 3:
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• Contracts between clients and objects: the Contract component specifies the level of
service required by a client, the level of service a remote object is expected to provide its
clients with, the operating regions indicating the possible measured QoS, and actions to
take when the QoS level changes.

• Delegates of remote objects: a Delegate component is a wrapper of a remote object, and
provides a functional interface identical to that of the remote object it wraps; in addition,
this component implements locally adaptive behavior, based upon the current state of the
system QoS. For each method invocation, the Delegate is responsible for reading the
QoS contract.

• System condition objects: these components implement interfaces to resources,
mechanisms, objects and ORBs in the system that require to be measured and controlled
by QuO contracts.

Moreover, the QuO toolkit includes:

• a Quality Description Language (QDL), used for describing contracts, system
condition objects, and the adaptive behavior of the objects and the delegates;

• the QuO kernel, which coordinates the evaluation of contracts and the monitoring of the
system condition objects;

• Code Generators, which weave together the QDL descriptions, the QuO kernel code,
and the client code to produce a single program.

When the client invokes a method on the remote object, it is actually invoking that method on
the local delegate, which triggers contract evaluation. The contract component gets the actual
values of the system conditions, to determine the current operating region. The delegate chooses
the behavior based on the current regions; for instance, the delegate might i) chose between
alternative methods, or ii) block when QoS has degraded, or iii) pass the method invocation
through to the remote object. Then the remote object is invoked, performs its method and
returns a value. By this time, the delegate performs similar processing upon the method return,
i.e. it evaluates the contract to obtain the QoS regions and selects a behavior, passing then the
return value back to the client [Vanegas et al.1998].  

In summary, QuO provides a middleware platform capable of supporting end-to-end QoS. Its
important features are the QuO Contracts, and the QDL implemented to describe these
Contracts. However, QuO monitoring and adaptation mechanisms do not appear to be
sufficiently flexible, as they can be activated only when an invocation on a remote method is
made by a client, or the result of that invocation is returned to that client.
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Fig. 3: QuO Framework

2.3 Agilos

Agilos (Agile QoS) is a middleware architecture designed to provide services that can support
so-called application-aware QoS adaptation mechanisms for use from distributed applications
structured as a set of CORBA objects.

The Agilos adaptation mechanisms are fully configurable to the application’s needs, and aware
of the application-specific semantics.  These mechanisms monitor the system resources, and
maintain system-wide adaptation properties of the applications. As they are implemented at the
middleware level, they do not require tight integration or modifications to the services
implemented in the OS kernel and network protocol stack.

Agilos is designed as a three-tier architecture, as illustrated in Figure 4. The first tier embodies
two components, namely the adaptors and the observers, which maintain tight relationships
with individual resources, and support low level resource adaptation by reacting to changes in
the availability of those resources.

The second tier consists of application-specific configurators, responsible for taking decisions
as to when and what application functions are to be invoked in a client-server application (based
upon on-the-fly user preferences and application-specific rules). Moreover, this tier includes so-
called QualProbes components that provide QoS probing and profiling services, so that
application-specific adaptation rules can be either derived by measurements, or specified
explicitly by the user.

The third tier, on both clients and servers, consists of a centralized gateway and multiple
negotiators that control the adaptation behavior of an application constructed out of multiple
clients and servers, so that dynamic reconfigurations of the client-server mapping are possible,
and can be tuned to the application.
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Fig 4: Agilos Architecture

It is worth observing that both the middleware components and the actual QoS-aware
applications may be reconfigured to adapt to the changing environment. Thus, as pointed out in
[Baochun 2000], the following two distinct approaches exist to the design of application-aware
QoS adaptation mechanisms.

One approach, adopted by the QuO middleware described earlier, is to dynamically reconfigure
the middleware itself so that it can provide a stable and predictable operating environment to the
application, transparently to the application itself. This approach is attractive as it does not
require any modifications to the application; hence, any legacy application can be deployed with
little efforts and with a certain level of QoS assurance. However, since it can only provide a
generic solution to all applications, a set of highly application-specific requirements cannot be
addressed.

In contrast, the middleware can be active, and exert strict control of the adaptation behavior of
the QoS-aware applications, so that these applications adapt and reconfigure themselves under
such control. This approach has the advantage of knowing exactly what are the application-
specific adaptation priorities and requirements, so that appropriate adaptation choices can be
made to address these requirements.  The Agilos middleware architecture implements this
approach.

2.4 Real-Time Specification for Java

The Real-Time Specification for Java (RTSJ) extends the Java programming language and the
Java Virtual Machine specifications in order to provide an Application Programming Interface
that enables the creation, verification, analysis, execution and management of real-time Java
threads (i.e., Java threads whose correctness criteria include timeliness) [Bollella et al. 2000].
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The Real-Time for Java Experts Group identified the following seven areas of interest that
required Java language extensions; namely, thread scheduling, memory management, thread
synchronization, asynchronous event handling, asynchronous control transfer, asynchronous
thread termination, and physical memory management.

Thus, in essence, RTSJ consists of a set of primitives that extend the Java programming
language so as allow the programmer of real-time Java applications to deal with the seven areas
of interest mentioned above.

2.5 ControlWare

ControlWare is a middleware platform developed to provide Internet services with performance
guarantees. This platform applies methods, derived from the Control Theory, for system
configuration and control purposes. Specifically, using ControlWare, the controlled system can
be an Internet service, and the control goal is to provide that service with QoS guarantees.

ControlWare provides the Internet service developer with software tools and library routines for
converting QoS specifications (i.e., the required QoS guarantees) into so-called feedback
control loops; these loops are stored in service configuration files, and implement the service
performance control mechanisms.

In addition, ControlWare implements a convenient interface between the service software and
the feedback control loops mentioned above. This interface, illustrated in Figure 5, is termed
SoftBus, and is responsible for the management of the monitoring of the controlled system, and
its adaptation to possible variations of the execution environment. The SoftBus is a distributed
protocol running across multiple machines and address spaces, forming a virtual application
backbone into which applications, performance sensors, and actuators can plug-in. Sensors and
actuators measure the system performance, and implement the required adaptation strategies.

Fig. 5: ControlWare Architecture

2.6 The AMIDST Project

This project investigates the design of a specialized middleware framework that meets QoS
application requirements. Similar to ControlWare, this framework deploys mechanisms derived
from the Control Theory in order to i) control that the QoS application requirements be
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effectively met, and ii) adapt the execution environment to possible variations in the resource
availability which may occur.

As illustrated in Figure 6, the AMIDST Project middleware framework consists of a
middleware platform and a control loop. The middleware platform incorporates the computing
and communication resources which may have to be manipulated in order to meet some agreed
QoS levels (i.e., the QoS application requirements). The control loop is responsible for
assessing whether or not the agreed QoS is effectively met, and adapting the execution
environment, if necessary.

The platform maintains probes that enable sensors, in the control loop, to observe the QoS
delivered by the computing and communication resources. An interpreter evaluates the QoS
observed by a sensor, according to some metric relevant to the specific QoS parameter under
observation.

For example, in a client-server application, it can be required that the client perceived response
time fall, on average, within some agreed QoS range. To this end, it can be necessary firstly to
observe and sample a number of client request transmission, and relative server response
delivery, times; secondly, to calculate the average response time obtained from those
observations. In this example, this calculation is carried out by the above mentioned interpreter.

A comparator compares the value of a particular QoS parameter, returned by the interpreter,
with the agreed QoS value of that parameter. If a difference between these two values is
detected, a decider is enabled, which selects an appropriate control strategy, consisting of
objectives to be reached in the execution of the control loop.

A translator is responsible for translating the control strategy into a collection of control
actions, (i.e., manipulations of the controlled system); finally, an actuator schedules these
control actions so that they are carried out using one or more probes.

Fig. 6: AMIDST Architecture

2.7 Policy Based System

A QoS Policy Architecture has been proposed by Sun Microsystems [Kakadia 2000] in the
area of so-called Policy Based Systems. These are systems that control the access to the
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networking and computing resources using policies that reflect business goals in an automated
manner. Figure 7 shows the architectural components of the Sun Microsystems Policy Based
Architecture.

This Architecture relies on the concept of policy; i.e., a high level abstraction that represents a
business objective. Typically, a policy can be specified in a variety of “formats” (e.g., a natural
language), and requires a translation from that language into simple device-specific
configurations.

In general, the process of Policy based administration starts with a Service Level Agreement
(SLA) between a provider and a customer; that SLA can be translated into a policy object
representing the policy abstraction. A policy object is specified and entered in the Policy
Management Tool (PMT) that validates it, resolves possible conflicts, stores it in persistent
storage, and forwards it to the Policy Decision Point (PDP). The PDP reads a policy object,
translates it into device-specific configurations, and forwards those configurations to the
appropriate Policy Enforcement Points (PEPs). The PEPs must ensure that the policies are
carried out by allocating appropriate resources, such as CPU, bandwidth, and buffer spaces; to
this end, the PEPs reconfigure the devices, based on the configurations provided by the PDP.

Fig. 7: Policy Architecture

2.8 QoS Controller

The QoS Controller [Menasce’ et al. 2001] has been developed in order to monitor and adapt
e-commerce sites so that desired QoS levels can be attained. The QoS Controller monitors the
e-commerce site, and uses control theory-based techniques to determine the values of various
configuration parameters. These parameters can be changed dynamically in order to ensure that
the site shows as little deviation as possible from the desired QoS levels. In essence, assuming
that an e-commerce site deploys the QoS Controller, this Controller periodically collects data, in
time intervals named Controller Intervals (CIs); at the end of each CI, the QoS Controller
decides whether or not reconfiguration has to take place.
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The principal components of the QoS Controller are the Workload Monitor (WM), the
Performance Monitor (PM), the Configuration Controller (CC), the Performance Model Solver
(PMS), and the QoS Monitor (QoSM), illustrated in Figure 8.

The WM collects information about the arrival rate of requests, and computes the average
request arrival rate in a CI. The PM measures device (e.g. CPU, disks) utilisations for the Web
applications and database server machines running at the e-commerce site. Using this
information the PM computes the service demand (i.e. the total service time per request at a
given time) at each device during the CI.

The QoSM checks, at the end of each CI, if any of the QoS metric has been violated by
receiving information of completing requests from the e-commerce site; this component decides
whether there is a need to change the site configuration. In the affirmative case, it instructs the
CC to determine a new configuration for the site.

Finally, the PMS computes the QoS values for each configuration it receives from the CC,
using service demands received from the PM and the arrival rate received from WM.

Fig. 8: QoS Controller Architecture

To conclude our state of the art assessment, it is worth observing that, in essence, the
architectures we have examined consist of a collection of QoS-aware middleware services
providing end-to-end QoS guarantees. These services are typically responsible for meeting the
non-functional application requirements mentioned above, so as to allow the application
developer to concentrate on the implementation of the functional aspects of his/her application.

The distinguishing features of these architectures can be summarized as follows. The QoS
Broker, RT Corba, TAO, and RTSJ architectures address issues of end-to-end QoS in
multimedia and mission critical distributed applications, incorporating resource reservation and
monitoring mechanisms. QuO embodies adaptation mechanisms that can be enabled at the time
a method is invoked. Agilos provides the applications with support for the invocation of
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adaptation mechanisms implemented at the application level. Finally, ControlWare, AMIDST,
Policy Based System, and the QoS Controller incorporate adaptation mechanisms whose
internal logic is based on the feedback control theory.

In the following Section we examine two specific use cases that allow us to derive the principal
end-to-end QoS requirements the TAPAS architecture has to meet, and to identify the relevant
services this architecture is to incorporate in order to meet those requirements. The motivations
for a use cases driven approach to requirements capturing are summarized below.

3 Architectural design issues

Use cases have become a common practice for capturing the functional requirements of a
computing system. They originated from the object-oriented community; however, their
applicability is not limited to object-oriented systems, only. The use cases driven approach has
been introduced by Ivar Jacobson in [Jacobson 1987, Jacobson 1992], and is based on
describing usage scenarios of a system under development (sud, in the following). Specifically,
a use case is not a single scenario; rather, it can be thought of as a “class” that defines a set of
related scenarios, each of which captures a specific course of interactions that can take place
between one or more “actors” and the sud (an “actor” is an external entity, such as a user,
interacting directly with the sud).

Notable advantages of this approach include the following:

• use cases are a powerful technique for the elicitation and documentation of the
functional requirements of a sud;

• as use cases capture the system functional requirements from the user's point of view,
they can assist the system designer in both ensuring that the correct system is
developed, and validating it;

• use cases can help to master and control the complexity of large projects by
decomposing the problem into major functions (i.e., the use cases), and by specifying
applications from the users' perspective;

• use cases can provide one with the foundation on which to specify end-to-end
requirements for distributed applications.

A number of limitations of this approach have been pointed out in [Meyer 1998, Firesmith
1995]. These limitations arise principally from the observation that use cases are not object
oriented. Rather, they allow one to capture functional abstractions that do not necessarily map
into objects and classes. However, as pointed out in [Lee 1994], the use case approach is a
powerful technique for gathering requirements, and defining problem and system boundaries,
effectively; hence, for the purposes of this Report, we have favored this approach.

Thus, in this Report we examine two specific use cases that allow us to capture different
scenarios in which the TAPAS platform (i.e., our sud) can be used, and to reveal the
functionalities the TAPAS platform users can expect from it. The first use case we examine
consists of the hosting a generic application at an ASP; in contrast, the second use case focuses
on the hosting a specific application that characterizes the interactions between the TAPAS
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platform and its users (namely, an application implementing a fair auction). However, before
discussing these two use cases, we introduce below, for the sake of completeness, both the use
case abstract model and the terminology we have adopted in the discussion of our two specific
use cases.

3.1 Use case abstract model

Each use case includes the above mentioned actors, which are external to the sud, and may
interact with it. Actors can be classified as either primary or secondary actors, and can represent
classes of users, roles that users play, and external systems. The primary actor is the one having
a goal, and requiring assistance from the sud in order to meet that goal; the secondary actor is
the one from which the sud itself needs assistance in order to provide the required services
[Cockburn 1997, Fowler et al. 1997].

A use case is initiated by a primary actor (e.g., a user), and describes the sequence of
interactions, between that primary and the sud, which is required in order to deliver the system
service that meets the primary’s goal. The use case completes successfully when this goal is
met.

Possible variants of the sequence of interactions mentioned above, such as alternative sequences
that may satisfy the primary’s goal, or error handling sequence, are termed extensions.

In the use case model, the sud is treated as a “black box”, and the interactions with it, including
the system responses, are as perceived from outside the system [Rosenberg et al. 1999].

Note that, in general, a use case is written using a natural language, and the vocabulary typical of
the use case domain. Thus, users can easily follow and validate the use cases, and be actively
involved in defining the requirements to be met by the sud [Malan & Bredemeyer 1999].

3.1.1 Context diagram

The sud we are modeling is intended for use from ASPs, who can host, run and maintain
customers’ applications. The general context within which an ASP carries out its activity can be
summarized as follows.

An ASP provides its customers with application hosting facilities on possibly remotely
managed servers, and enables the application users to access those applications.

In general, in order to preserve its reputation, an ASP has to provide its customers with
sufficient guarantees that a number of QoS requirements (e.g., availability, security, privacy) be
effectively met, in the provisioning of its services. Moreover, in order to deliver these services,
an ASP may make use of additional services that are offered by partner service providers (e.g.
Internet Service Providers, Storage Service Providers); thus, the ASP may require that the
services offered by those partners meet QoS requirements.

These requirements are specified within Service Level Agreements (SLAs) established between
the ASP and its customers, the ASP and its partners, and, possibly, the customers’ applications
and their users. (In essence, an SLA is a legally binding contract which defines both the services
to be provided, and the metrics that determine the successful delivery of these services.)
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In the use cases modeling approach, the relations between an ASP, its customers and its
possible partner service providers can be captured and described by means of a so-called
context diagram; i.e., a diagram showing the system, its actors, and the relevant use cases
[Ogush et al. 2000].  

Figure 9 illustrates the context diagram concerning the generic application hosting scenario,
mentioned previously. In particular, this Figure shows the relations between both the ASP and a
primary actor (i.e., the hosted application, in Figure 9), and the ASP and a secondary actor (i.e.,
the partner, in Figure 9). These relations are governed by the SLAs, depicted in Figure 9 (for
the purposes of this discussion we shall assume that no SLA is defined between the application
and its end-user).  

From the context diagram depicted in Figure 9, it emerges that an ASP requires that the
applications it hosts can access the services they need, regardless of the underlying platforms, or
organizations, through which these services are provided (i.e., hosted applications do not need to
be aware of possible SLAs between that ASP and other service providers).

The sud we are concerned with, i.e., the TAPAS middleware platform, can be used to meet this
ASP requirement, provided that this platform incorporate a collection of QoS-aware middleware
services that meet non functional QoS requirements such as those mentioned above.

Fig. 9: The Application Hosting Scenario

3.1.2 Terminology

The following terminology is used in the description of the use cases:

• ASP: this acronym is used to refer to the TAPAS platform offering access over the
Internet to applications and related services, making available both its own resources
and those belonging to partner service providers, according to the SLAs.
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• Application: a program implemented to perform a specific function for use from the
end-users or, in some cases, from another application; it requires hardware and
software resources in order be executed.

• Resource: any addressable unit of information or available facility, offered in a limited
supply, used by an application to perform its function. It can be a local resource, such
as storage or a processing unit, as well as the network, or a remote service provided by
a partner service provider.  

• Customer: the entity that obtains the service as defined in the SLA; it can be the end-
user, the application owner, or the ASP itself, as customer of one of its partners.

• End-user: the ASP’s customer; i.e., an individual entity or an enterprise using the
application hosted by the ASP.

• Partner: a service provider having the ASP as a customer, supplying it some services,
and providing it with infrastructures (e.g., an ISP that offers network services
according to some SLA with the ASP).

• Service: what is supplied by the ASP, which hosts the application, or by one of its
partners, which provides access to its resources.

• SLA: the legally binding contract, which defines the services to be provided and the
metrics determining the successful delivery of these services. The SLAs bend the
parties, regarding, for instance, security, privacy, responsiveness and measurable
quality of the underlying network.

3.2 Use case A: Application Hosting scenario

This use case shows the correlation between the ASP and the end-user, assuming that the goal
is to enable the ASP to host the end-user application, according to a contract between them.

The end-user requires the ASP to host an application, using the ASP resources. The ASP
allows the end-user to run the application in accordance with the agreements stated in the SLA
governing the service provision.  This SLA is included in the contract mentioned above.

The ASP monitors the application and the resources it makes available, in order to assess
whether the service is being delivered as agreed in the SLA.

If problems arise in the delivery of the service at application run time, it is the responsibility of
the ASP to adapt the service provisioning, in order not to violate the SLA. The adaptation can
start before the SLA violation point is reached. For instance, it may occur that the SLA is
violated for a short time, which denotes that the violation point is not yet reached; whereas, if
performance remains for too long at a lower level, or it exceeds the SLA defined boundaries, the
SLA is considered violated, as illustrated in Figure 10.
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Fig. 10: Performance metrics

Normal termination of the service delivery occurs when this delivery terminates without
violations of the SLA. Abnormal termination of the service provisioning may occur when the
SLA is violated. (In this latter case, the ASP may be subject to penalties; however, this topic is
outside the scope of this Report.)

3.2.1 Main success scenario

1. The end-user contacts the ASP in order to require the hosting of an application.

2. The ASP and the end-user define an SLA (or a set of SLAs) that specify the application
hosting requirements.  

3. Both parties agree on, and sign, a contract containing the SLA(s). This contract defines
the terms and conditions under which the application hosting service is to be supplied.

4. The ASP runs the application, according to the SLA, and using the available resources.

5. The ASP may accesses remote resources provided by its partners.

6. The end-user uses the application hosted by the ASP.

7. The ASP monitors and records the performance of the application to assess whether or
not the SLA is being honored.

8. The contract terminates normally when it reaches the closing terms.

3.2.2 Extensions

5.a. An ASP partner violates the SLA it has with the ASP, causing difficulties to the ASP in the
service delivery to its customers.

5.a.1. The ASP complains with the partner.

5.a.2. The ASP adapts its services.

7.a.  The ASP violates the SLA with the end-user for a short time:
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7.a.1. ASP adapts its services.

7.b. The ASP violates SLA for a long time:

7.b.1. the end-user complains with the ASP

7.b.2. the contract is breached abnormally. End use case.

3.3 Use case B: Auction Hosting scenario

In this use case, the ASP is hosting an electronic auction application. It interacts with the
following primary actors (i.e., its customers): end-users playing roles of auctioneer, sellers, and
bidders. At the same time, it interacts with partner services providers, which are the secondary
actors. The goal is to make the system host the auctioneer’s application, so that sellers and
bidders can participate to the auction in order to exchange goods. The context diagram
illustrating this scenario is depicted in Figure 11.

Fig. 11: The Auction Hosting scenario

End-users contact the ASP with different purposes. Namely, the auctioneer will contact the ASP
in order to have his auction application hosted by the ASP (in accordance with some agreed
contract); the seller(s) in order to sell goods through the auction application, and the bidders in
order to bid for those goods.

The bidders bid for the items on sale, and the ASP starts the auction collecting all the necessary
data. The auction is terminated if there are no more bids for the item within a timeframe from
the last valid bid.

In hosting the fair auction, the ASP contributes to preserve the fundamental fairness property of
an auction, specifically: “all participant bidders in the auction must have an equally fair chance
for submitting a successful bid, and that all participant sellers must have an equally fair chance
for selling their items” [Ezhilchelvan et al. 2001].
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In his job the ASP is helped by its partners, which it must coordinate and collaborate with for
the success of the electronic auction. There are different partners, one for each required service
for the auction’s establishment. Specifically there are service providers such as the ISP, offering
communication resources, the Storage Service Provider (SSP), offering storage resources, and
the Credit Rating Agency (CRA) that keeps in contact with retails banks for the purchase of the
item. The ASP sends requests for proposals (RFP, a sealed proposal used for purchases of
items or services) to such a provider’s component, asking the CRA for financial services.

In this way there is a chain of calls between subsequent service providers. Regarding the service
providers, there is a certain level of standardization offering real benefits. Service providers can
easily be exchanged if switching from one service provider to another does not lead to further
interface programming [Beckman et al. 2002]. At the closing terms, if the contract with the
auctioneer is honored, the service delivery ends normally; otherwise, it can be terminated
abnormally.

3.3.1 Main success scenario

1. The end-user, playing the role of the auctioneer, requires the ASP to host his auction
application, according to a commonly agreed SLA.

2. To be on-line, the ASP uses the network services offered by the ISP

3. The ASP starts hosting the auction application

4. An end-user calls in the ASP to use the auction application with a request for selling an
item, registering himself as seller.

5. The ASP records the seller’s data (e.g., name, address, details of the item on sale).

6. End-users call in to place bids, registering themselves as bidders.

7. The ASP records bidders’ data (e.g., name, address, requested item on sale).

8. The ASP provides the bidders with information on selected items (e.g., price, delivery
date).

9. Bidders participate to the auction run by the ASP by submitting bids.

10. The winning bidder signs for order.

11. The ASP calls in the CRA, requesting for approval of the financial transaction required
in order to sell the item.

12. The contract between the ASP and the auctioneer for hosting the auction application
ends successfully when it reaches the closing terms.

3.3.2 Extensions

1.a. During the duration of the contract, the SLA is violated by the ASP for a short time:

1.a.1. the ASP adapts itself in order to honor the SLA.
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1.b. SLA is violated by the ASP for a long time:

1.b.1. End-users complain with the ASP

1.b.2. Contract is abnormally breached. End use case.

2.a. Network services are not efficient and ASP may have difficulties in offering the requested
service to its customer:

2.a.1. the ASP complains with the ISP;

2.a.2. the ASP adapts its service according to the modified conditions.

5.a. There is not enough local storage space:

5.a.1. The ASP uses the service offered by the SSP, its partner.

9.a. The ASP does not preserve fairness in delivering the bids:

9.a.1. bidders complain with the auctioneer;

9.a.2. the auctioneer complains with the ASP

9.a.3. Contract is abnormally breached. End use case.

11.a. CRA does not give the approval:

11.a.1. Item is not sold.

3.4 Requirements analysis

In general, the requirements analysis indicates how a sud should support the end-users’
activities,  provides a design strategy for building that sud [Robertson 1999], and lead to a well
founded architectural model [Verma 2000].  .

For the purposes of this Report, the requirements analysis of the two use cases we have
described discloses the two sets of user requirements concerning the necessary system
functionalities to be developed (see Subsections 3.4.1 and 3.4.2, below), and two sets of
requirements that derive from the activities of our industrial project partners [Beckman &
Oleneva 2002] (see Subsections 3.4.3 and 3.4.4, below).

3.4.1 Requirements from use case A

Use case A reveals the following requirements:  

R.1.1 The system must be able to interpret the SLA specification included in the contract agreed
by the parties. The SLAs’ specification has to be done according to a modeling language which
is sufficiently expressive to include all aspects (i.e. both technical and business related aspects)
of the service provisioning.

R.1.2 The system must run the application using both its own resources and those hired from
its partners, enforcing the agreed parameters included in SLA.
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R.1.3 The system must monitor the hosted application and the service delivered to the end-user,
and must adapt itself to changes that may occur during the service provisioning, always
honoring the agreed contract and SLAs.

R.1.4 The system must monitor the services delivered by its partners, in order to honor the SLA
with its own customers.

R.1.5 The system must periodically record the performance achieved.

3.4.2 Requirements from use case B

The use case B highlights the following requirements:

R.1.6 The system must collect data reliably, providing non-refutable statistics and trustworthy
reports.

R.1.7 The system must use a secure channel to contact the CRA in order to provide safe
transaction and management of private information.

R.1.8 The system must undertake the role of coordinator, integrating its services with the ones
offered by ISP, CRA, and SSP. Moreover it must provide a good level of standardization of
procedures.

R.1.9 The system must eliminate lack of trust in e-business services, using mechanisms of a
Certification Service Provider (CSP) and services of Trusted Third Parties (TTP).

3.4.3 Technology requirements

From a technology perspective, the requirements originate from the objective to extend current
industry standards and to expand different aspects of the service provisioning.  

R.2.1 From the modeling languages perspective, especially for the purposes of providing a
standard model for SLA, it should support the use of XML.

R.2.2 At the middleware level, the software industry currently focuses on component based
development. In this context, a widely used framework is the J2EE technology. However, there
may well be scope for investigating the uses of alternative technologies, such as the CORBA
Component Model.

R.2.3 At the network level, the system can make use of reliable multicast communication
paradigm, in order to support application requiring many to many communication.

3.4.4 Market requirements

The last set of requirements placed on the TAPAS platform originates from the need for
successful marketing. These requirements derive from the economic demands of the three major
stakeholders of the market domain to which the project is targeted: namely, ASPs, ASP
customers, and application developers.
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R.3.1 The system must be useful to the ASP consortium. This entails that the system must
reduce operation and maintenance costs by automating such procedures as negotiation,
implementation, and monitoring of the SLAs, as well as generating data for statistical analysis.  

R.3.2 The system must protect the customers’ business, offering assistance to the setting up of
the business, in consulting and software development. This entails that the system should be
able to support all phases of the software development process, enhancing open source
containers, building customers’ applications, and deploying and running them.

R.3.3 The system must provide facilities for easy development of third party business, which
implies it should support business-to-business integration, bringing together companies that can
collaborate in order to satisfy the market’s demands.

3.5 Mapping requirements to services

The requirements captured by the previous analysis can be mapped to the services of the
TAPAS middleware platform that meet them. Each group of requirements denotes distinct
system services that can be identified by means of their interface description, as discussed
below.

3.5.1 Interpreter Service

Requirements R.1.1 and R.2.1 can be met by an Interpreter Service that converts the SLA high
level specification into machine-readable format.

The Interpreter Service can use a modeling language that can express unambiguously the
properties of the IT services declared in the SLAs, and included in the contractual agreement
between the parties. A good example of this modeling language is SLAng [Lamanna et al.
2002], an XML language for capturing Service Level Agreements. This language provides
means to describe technical and non-technical characteristics of a service, including a so-called
Service Level Specifications (SLSs) that defines the QoS properties a service is to possess and
the related set of metrics with which the service provisioning can be measured.

The Interpreter isolates the SLSs within the SLA, and generates specific objects (e.g., policy
objects [Kakadia 2001], vector of performance [Menasce` 2001], a configuration file including
<parameter-value> pairs) which can be used by the Configuration Service, described in the next
Section, for setting up the environment in which the application can be executed.

Moreover, the Interpreter can make available the SLS to specific platform services that monitor
the adherence of the service delivery to that SLA.

3.5.2 Configuration Service

Requirements R.1.2, R.2.2 and R.3.2 can be met by the Configuration Service, responsible for
the management of the resources necessary to support the execution of the distributed
application, based on the QoS parameters specified in the SLS. Its principal responsibilities
include the following three services:
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• Resource Discovery

• QoS Negotiation

• Resource Reservation

These three services are concerned with the configuration of the system and, in particular, the
configuration of the resources required to achieve certain QoS levels. The discovery service is
responsible for discovering the available resources, and assessing whether these resources are
sufficient in order to meet the QoS application requirements.

Given a certain QoS required by the application, and a certain QoS which can be offered by the
middleware platform, a mechanism is required that negotiates the QoS levels and resource
allocations with the underlying system, and, possibly, other applications. This mechanism is is
implemented by the Negotiation Service. This Service will generate an agreed QoS; i.e., a sort of
contract which is established between the application and the middleware. This QoS contract
can be thought of as the QuO contract [Zinky et al. 1997, Loyall et al. 1998], previously
described, which QuO's delegates process in order to make a QoS-aware remote method
invocation.

Given this contract, the last operation the Configuration Service does is to reserve the resources
identified and negotiated in the previous phases.

3.5.3 Reporting Service

Requirements R.1.5, R.1.6 and R.3.1 can be met by the Reporting Service. It periodically
collects samples of performance, specifically the metric values expressing the technical
measures of the services provided by the system itself or by its partners. The collection of data
is made through a set of distributed Sensors, such as those used in ControlWare [Zhang et al.
2002], that periodically measure the achieved performance values.

Once the values are measured, the Reporting gathers and records them in order to be used for
statistical analysis, as well as to provide trustworthy reports for the customers and the partners,
and furthermore to represent an irrefutable proof in case of disagreements between parties. The
implementation of this service must involve dedicated mechanisms to providing trust issues.

3.5.4 Controller Service

Requirements R.1.3 and R.1.4 can be met by the Controller Service. This is the service in
charge of monitoring and adapting the hosted application and the middleware services used to
run it.

Adaptation might be caused by changes in the require output quality of service levels, in the
input quality of service levels, in external demands for resources (due to new request for service
or change in resource requirements), in system-wide resource reallocation. Hence, it is
necessary to monitor, at run time, the quality of service that can be achieved and, eventually, to
adapt these QoS levels in accordance with the changes occurred. The Controller Service’s
responsibilities are the following:
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• QoS Monitoring

• QoS Adaptation

The QoS monitoring activity is carried out in collaboration with the Reporting which gives data
collected by the sensors. These data are compared with the QoS levels specified by the
Configuration. For example, it checks if the output quality achieved falls below the required
level. At this point, whenever a warning condition is detected, the Controller must enforce the
required service, adapting the run-time environment and the resources, without affecting any
other application running on the middleware platform, and considering that the performance are
mainly composed by a set of concurrent factors, for instance, a message Delay is due to the
network Round Trip Time (RTT), to the server or client Delay, to the database I/O Performance
Delay or to the external memory Access Time.

In case the adaptation is necessary the Controller must decide which strategy to apply. A
theoretical basis for the design and implementation of this adaptation-based service can be the
Feedback Control Theory, which recent results indicate to be an effective instrument for the
monitoring and adaptation of software performance in highly unpredictable environments
[Ferrari G. 2002].    

3.5.5 Coordinator Service

Requirements R.1.8, R.2.3 and R.3.3 can be met by the Coordinator Service. With this service
the ASP addresses the needs of cooperation between different enterprises and, more specifically
here, enterprises providing IT services, as the ASP itself, ISP, SSP and general customers,
coordinating a chain of calls between subsequent service providers and end-users. The ASP
fulfils this function detecting whether parties are observing the agreements for the service
provisioning; it receives the periodical reports from the Reporting and compares them with the
agreements written in the contracts previously stipulated.

It must be remarked the two different kind of business in which the ASP is involved. On one
hand, regarding the contracts it has with its partners, the ASP appears as customer, on the other,
regarding the contracts with the end-users, ASP acts as provider. So that, in the former case, it
must monitor the received services, in order to verify that its rights are respected, but above all,
in order to fulfill the obligations with the end-users, looking after the agreements with the
customers and trying to adapt to any change of conditions. Whether any violation is detected it
must be registered and notified to the interested parties, using an Event Notification System
efficient enough to reveal all the problems arising in the service provisioning. The interested
parties are the ones involved in the contract, end-users or partners; furthermore in our future
scopes we will include the x-contract, defined in the deliverable D5 of the TAPAS project.

3.5.6 Security Service

Requirements R.1.7 and R.1.9 can be met by the Security Service, which is responsible for
secure procedures, essential for assuring safe Business-to-Business transactions and
management of financial data. It uses registration and authentication mechanisms to undertake
the information exchanged with the CRA. As well as the Reporting, it must eliminate lacks of
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trust, making use, among all, of trustworthy operations in the collection and management of
private data, for instance B2Bobjects [Cook et al. 2002].

3.6 High level System Architecture

Figure 12 illustrates how the various services interact within the TAPAS platform in order to
meet the elicited requirements.

The approach used, starting from use cases, which drive the requirements analysis, and the
following mapping of requirements to middleware services, provides solid guarantees on the
correctness, motivating the designing resolutions and validating the presented architecture.       

Fig. 12: Inside the “black box”, the middleware services

4 QoS-aware Application Server Architecture

In this Section we examine how to instantiate the architecture, described in the previous Section,
using the Java 2 Enterprise Edition (J2EE) component based technology.

4.1 System Model

As previously stated, ASPs are organizations that offer access to applications, such as software,
and related services on a rental basis via Internet. They supply a complete infrastructure for their
customers and they manage the inter-network and all the applications which clients wish to run.
In order to carry out these duties, the ASP may use a cluster of different machines running
heterogeneous operating systems. The machines can be located in different places, arbitrary
faraway from each other, so that they compose a wide area network infrastructure.

A possible system model is shown in Figure 13, where an ASP hosts distinct applications such
as electronic auctions, video conferences, and games over Internet. It might be possible that an
application uses functionalities or components of one or other applications hosted by the ASP
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itself. This can be done through the use of the middleware platform above designed, which
provides services so that distributed application interactions are carried out in a transparent,
secure, trusted and QoS-aware manner.

The platform consists of a group of application servers that exchange information with each
other inside the group itself. The application servers are execution environments providing a
number of core services capable of meeting specific non-functional requirements of the
applications. Each application server may be hosted inside a single machine; one machine can
run more than one application server (this can be useful for emulating a cluster of machines).

As the current trend is to design applications constructed out of a set of components, it may be
possible to distribute the instances of these components in different application servers. Thus,
Web components (e.g. servlets, Java Server Pages) can run on a Web Server, hosted inside an
application server, and the business logic components can be maintained separate and run on
another application server. Figure 13 shows the example of the electronic auction, which is a
particular demanding application in terms of QoS.

Fig. 13: System Model
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4.1.1 Auction Scenario

Fig. 14: Auction Scenario

Figure 14 illustrates the auction scenario that has been abstractly described in the Section 3.3,
where different entities interact with each other in order to complete auction transactions.

To manage the interactions between bidders and sellers, the application owner makes available
the electronic auction application. In this way, bidders and sellers register themselves with the
auction owner, by signing a contract. This contract entitles the end-users to use the auction
system: they can access the information, generally, through HTTP requests and they can use a
software plug-in (Tapas plug-in in Figure 14) which basically monitors the clients’ activities.

The application owner might have his/her own infrastructure to host the auction application, or
might ask an ASP for providing him/her with a suitable platform that can execute that auction
application. In the latter case, an SLA is established between the two organizations to which the
ASP and the application owner belong; this SLA can be described using SLAng [Lamanna et al.
2003].

At this point, the ASP might have all the needed resources to execute the auction, or may require
network or storage resources, for example from an ISP and the SSP, respectively. Again, this
requirement can trigger the stipulation of SLAs whereby every term for the provisioning of the
service is specified.

The ASP may use a subset of its machines for running the middleware platform, which we have
called TAPAS platform, with the standard and new QoS-aware services provided. These services
communicate with each other using a protocol such as RMI/IIOP.

In order to implement the middleware platform, in next Section we will describe a study about
component based technologies.
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4.2 A proposed architecture implementation

As already mentioned, state of the art application services can be developed using components
based technologies, such as those provided by J2EE, Microsoft .NET or the Object
Management Group's CORBA Component Model.

These component oriented middleware promote the use of containers to host component
instances. A container is a runtime environment which provides the system-level services to the
components it contains. Thus, it is responsible for using the underlying middleware services for
communication, persistence, transactions, database management, security and so forth.

Our goal is to implement the middleware architecture of our model using just these kind of
concepts and services. Before explaining the new services the middleware requires, in order to
meet application specific QoS requirements, let us describe the component oriented
technologies we are planning to use for the implementation of our proposed architecture.

4.2.1 Java 2 Enterprise Edition

As shown in Figure 15, the J2EE platform uses a multi-tiered distributed application model.
This means that the application logic is divided into components according to function, and the
various application components that made up the J2EE application, are installed in different
machines depending on which tier, in the multi-tiered J2EE environment, the application
component belongs  [Bodoff et al. 2001, Shannon 2001].

The J2EE platform consists of the following three principal tiers:

• Client Tier — This tier includes the client components running on the client machine.

• Middleware Tier!— This tier is structured in two further tiers; namely, the Web Tier
and the Business Tier. The former includes the Web components, the latter the
Enterprise Java Beans (EJB), both running on the J2EE server.

• Enterprise Information System (EIS) Tier — The EIS software runs on the EIS server
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Fig. 15: J2EE platform

4.2.1.1 Components and Containers

Starting from the client tier, the client components include:

• Application clients — They are hosted inside an application container which is, in turn,
responsible for managing the execution of the application client components

• Applets!— They are hosted inside an applet container which, in turn, manages the
execution of applets and consists of a Web browser and Java Plug-in together, running
on the client

J2EE Web components can be either servlets or JSP pages. Servlets are java classes that
dynamically process requests and produce responses. JSP pages are text-based documents that
execute as servlets. These Web components are hosted inside Web containers that take care of
the execution of servlets and JSPs.

Finally, business components are basically constituted by Enterprise Java Beans (EJBs) hosted
inside an EJB container. There are three types of EJBs:

• Session Beans — Represent a transient conversation with a client

• Entity Beans!— Represent a persistent data storage in a row of a database table
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• Message Driven Beans!— Combine features of a session bean and a Java Message
Service (JMS) listener, allowing a business component to get messages asynchronously

This J2EE architecture has been implemented by different working groups producing
application servers free to download. In this report, we will focus on two of them: JBoss and
JOnAS.

JBoss is an open source application server. It integrates a set of services for a full J2EE-based
implementation. Starting from the Java Management eXtensions (JMX), the JBoss group built a
microkernel based server [JBOSS 2003].

JOnAS is also a Java open source application server conforming to the J2EE specifications
[JONAS 2003]. It is highly modular and can be used:

• As a J2EE server!— For deploying and running EAR (Enterprise ARchive) applications

• As an EJB container!— For deploying and running EJB components

• As a Web container!— For deploying and running JSPs and servlets

Next Section focuses on QoS-aware middleware functionalities that we believe are necessary in
order to meet QoS requirements specified within SLAs.

4.3 QoS-Aware Application Servers

Both the J2EE application server and its relative open source implementations are designed in
terms of services. A service, typically, provides system resources to containers. As stated before,
these services include persistence communication, database managements, transaction, security
and so forth.

Moreover the TAPAS platform must provide QoS-aware execution of components so that
application servers themselves rely on the QoS-aware middleware services introduced in the
Section 3.5. To achieve our target, J2EE platform must be extended in order to enable the
monitoring and the enforcement of QoS.

4.3.1 How to include QoS-Aware services in J2EE

The J2EE platform introduces an important architectural concept, namely the container; i.e., an
environment hosting application components instances and providing a set of middleware
services. In fact every container uses the underlying middleware services (e.g. Java Message
Service (JMS), Java Transaction Service (JTS), Java Authentication Authorization Service
(JAAS), Java Naming and Directory Interface (JNDI), etc...) that, in turn, rely on Java 2
Standard Edition (J2SE), as it is shown in Figure 16.

The J2EE containers provide the Application Programming Interfaces (APIs) that define the
contract between J2EE application components and the J2EE platform. However, there are other
important contracts that are established between the J2EE platform and the service providers that
may be plugged into a J2EE product.
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These other contracts are managed by the Connector (shown in Figure 15), a J2EE standard for
integrating J2EE products and applications with heterogeneous Enterprise Information Systems
(EISs). Specifically, the Connector enables the existing EIS of a vendor to provide a standard
resource adaptor for its information system. The Connector architecture defines the services that
the J2EE-compliant application must provide. These services, namely the transaction manager,
security and connection pooling, are delineated by three Connector system-level contracts. The
first one, concerning the transaction manager, provides one with the ability to manage
transactions across multiple EIS resource managers; the second one, concerning the security,
enables secure access to an EIS and protects the resources managed by that EIS; finally, the
third one, concerning the connection pooling, enables an application server to pool connections
to an underlying EIS, which may be crucial in order to create a scalable application environment.
These three system contracts together can be considered as a Service Provider Interface (SPI).

Hence, our overall objective is to add new services in order to provide QoS-aware containers.
First of all, here we present the Configuration Service (CS) and the Controller Service (CTRL),
that have their own SPIs used to interact with the platform and the new APIs used, at the upper
level, by application components, in order to satisfy particular QoS requirements. Moreover,
these new services must be added to the entire platform so that containers use them in the same
manner they do for the other standard services.  Figure 16 highlights the integration of the new
QoS-aware service added in our design, with the tiers of the overall J2EE architecture
(illustrated in Figure 15).

Fig. 16: J2EE: QoS-aware containers
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4.3.2 How to extend JBoss

The JBoss' goal is to provide the full Open Source J2EE stack. To achieve this objective, it uses
a software called JMX (Java Management eXtension) which is a powerful tool used for
software integration. JMX provides a software bus that allows one to integrate modules,
containers and plug-ins. Figure 17 illustrates how JMX is used as bus through which the
components of the JBoss architecture interact [Stark & Jboss Group 2002].

The basic idea is to produce some independent QoS-aware modules (with their own APIs and
SPIs) such as Configuration Service Module (CS in Figure 17) and Controller Service Module
(CTRL in the Figure), and use the JMX for integrating them with the other standard services
already provided by the platform.

Fig. 17: JBoss JMX Microkernel

4.3.3 How to extend JOnAS

JOnAS is a pure Java open source application server and includes some advanced and important
features to the implementation of all J2EE related standard. These characteristics are the
following [Checcet & Marguerite 2002]:

• Management!— JOnAS server management uses JMX (as JBoss does) and provides a
servlet based management console named Jadmin (Figure 18)

• Sevice — It allows to apply a component model approach at the middleware level and
makes easy the integration of new modules. It also allows to start only the services
needed by a particular application, thus saving useless system resources

• Scalability — JOnAS integrates several optimization mechanisms for increasing the
server scalability

• Distribution — JOnAS is working with two distributed processing environments, RMI
(Remote Method Invocation) or Jeremie, the RMI personality of an Object Request
Broker called Jonathan
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The main principle for defining a new JOnAS service is to encapsulate it in a class whose
interface is well known by JOnAS. More precisely, such a class allows to initialize, start and
stop the service. Then, in order to make JOnAS aware of such a new service, some properties
files should be changed accordingly. So, again, the basic idea is to produce separate modules,
with their own APIs and SPIs and, in this case, make them available as a class (Figure 18).

Fig. 18: JOnAS Architecture

4.3.4 Packaging

Three important phases can be identified for producing the final component application that is
executed in any of the application servers described earlier. These three phases are (Figure 19):

• Coding Phase

• Deployment Phase

• Running Phase

The first is generally carried out by an Application Developer who is responsible for producing
all the final application source files compiled, together with the XML document where the trust
and QoS requirements, previously derived by the SLA through the Interpreter Service, are
included.

These files are then made available to the Deployer who is responsible for carrying out the
deployment phase.

The deployment needs before that all the J2EE-compliant application components be packaged
and bundled into a J2EE final application. This application, together with its modules, is then
delivered in an Enterprise Archive (EAR) file, which contains deployment descriptors that are
XML documents describing the components’ (i.e., EJB components, Web components)
deployment settings. These settings specify the application component’s external resource
requirements, security requirements, environment parameters and so forth. Then, the



37

deployment descriptors must be parsed and the environment configured. To this end, our CS
can be enabled, kicking off the protocol for discovering, negotiating and reserving the resources
required by the application.

Once the platform to be used is configured, the same Deployer starts up the execution of the
newly installed and configured application. The application has to be monitored, at run time, to
guarantee that its execution is respecting the SLA. The monitoring is a responsibility of our
CTRL that will apply appropriate adaptation strategies if changes in the environment are
detected.

Fig. 19: Coding/Deploying/Running

4.4 Configuration Service implementation

The Configuration Service (CS) is one of the services we have introduced in our middleware
architecture in order to make it QoS-aware. Its principal responsibility is to configure the
platform used to support the execution of distributed applications. To this end, the
Configuration Service performs the following three principal activities: resource discovery,
resource negotiation and, finally, resource reservation.

The resource discovery activity allows the CS to locate the resources required in order to
execute the application. As the resource discovery completes, the negotiation activity assesses
the availability of these resources. Finally, as the resource availability has been assessed, the
reservation of the resources identified as available is carried out (i.e., these resources are booked
in order to support the application execution).

In order to assess the availability of the resources, each application server in our architecture
implements a Reporting Service (ES), responsible for monitoring and reporting the state of the
resources, local to its home application server. Specifically, the RS, through the use of sensors
such as those described in [Bergmans et al. 2002], maintains reports on the state of the local
resources, in persistent storage. These reports can be used by the CS for assessing the resource
availability.
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An example of CS implementation is suggested by the protocol described in Figure 20, using a
pseudo-code. The CS is started at application server start up time. At that point, it is ready to get
application requests. When the SLS specifications are available, at deployment time, the CS is
enabled. This leads to the execution of the CS protocol (i.e., the above mentioned discovery,
negotiation and reservation of the required resources).

In our example, we assume that each application server incorporates an instance of the CS,
which resides at some well-known address within its home application server, and supports the
construction of the application run-time environment in that specific server. If a group of
application servers is required to work together to host an “extended application” (i.e., an
application running on different servers), the CSs in this group of servers can coordinate, using
group communication technology, in order to set up the required application run time
environment across the various application servers in the group.

Within this scenario, the enabled CS, with the SLS as input, can declare itself as the group
coordinator, and send a request for resource availability to the other CSs in the group,
providing them with its own input SLS. (The SLS is transmitted for survivability purposes; i.e.,
if the coordinator crashes, an alternative coordinator can be elected to complete the required
configuration, based on the SLS it possess.) At this point every CS in the group, including the
coordinator, enquires for the locally available resources. This brings every CS to book its own
available resources, and to send its availability back to the coordinator. Then, the negotiation can
be started: the coordinator collects the information received in order to derive an agreed QoS
that is, as introduced earlier, a contract between the application and the middleware platform. For
instance, this contract may include which servers to use, and how much resource to spend, for
each type of resources involved in the process. These values can be derived from appropriate
calculations that take into account both the application requirements specified within the SLS,
and the states of the resources obtained by the RS.

Once producing this agreed QoS, the coordinator is ready to confirm the reservation of the
resources previously booked. Finally, the containers are instantiated inside the application
servers so that they can be used to host application components.
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Fig. 20: Configuration Service protocol

Different types of resources must be orchestrated by the CS. One of them is the database that
can be local or remotely distributed. Next Section describes some replication techniques for
high availability regarding databases and application servers.

4.4.1 Component replication: a case study using EJBs

One of the responsibilities of a service provider is to guarantee the availability of the service
provision, i.e. the time during which a service or an application is guaranteed to be available. It
can be defined by a given period of time or a percentage or a combination of both [Beckman et
al. 2002].
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In order to satisfy this QoS requirement, the middleware platform is capable of applying
techniques of component replication. Specifically [Morgan et al. 2002] present a study whereby
they examine how replication for availability can be supported by containers so that components
that are transparently using persistence and transaction can also be made highly available (see
attached paper for details). They take the specific case of EJB components for managing
replication and they consider strict consistency (i.e. to require that the states of all available
copies of replicas are kept mutually consistent).

The aim here is to investigate how existing techniques can be migrated to components, rather
than inventing new replication techniques for components. In the spirit of component
middleware, the responsibility of replication management is delegated to the container
(container managed replication). Three replication approaches are considered, beginning with a
simple approach into which incrementally incorporate additional sophistication.

The first approach is the State replication with single application server. In this approach, the
database is replicated and its failures can be masked, but not the application server’s ones. The
approach to database replication leaves the container, transaction managers internal to databases
and the transaction manager of the application server undisturbed. In order to do it, proxy
resource adaptors have been introduced. They reissue the operations arriving from the
transaction manager and the container to all replica databases via their resource adaptors. Hence,
neither the transaction manager nor the containers can to distinguish the proxy resource
adaptors and the real resource adaptors communicating with the real JDBMS. Moreover the
APIs exposed by the proxies are the same as the real adaptors, and the main task is to direct, to
the appropriate database replica, requests of access by the containers and requests of transaction
by the transaction manager. With this mechanism, if a transaction fails during the execution, the
transaction manager does not roll it back, and the request is issued to the proper replica.

To ensure database replica states remain mutually consistent, the proxy resource adaptor
maintains the receive ordering of operation invocations when redirect them to the appropriate
resource adaptor replicas. This guarantees that each resource adaptor replica receives operations
in the same order, thus preserving consistent locking of resources across resource manager
replicas.  

In the second approach, State replication with clustered application server, the database is
replicated and multiple application servers are used for load sharing the total number of
transactions in the system. In fact, to ensure a transaction manager does not present a bottle
neck in the system and a single point of failure, application servers are replicated complete with
the transaction managers. In this case the previous architecture, with resource adaptor proxies
masking resource adaptor replicas, is maintained. The proxies, belonging to different application
servers, are managed using a group communication system that supports the abstraction of a
process group.

In the last approach, State and computation replication with clustered application servers, the
database is replicated and instances of beans are replicated on the cluster of application servers.
For masking application server failures independently of state replication, the containers must
be replicated on distinct application servers (with distinct transaction managers) and the states of
EJBs in container replicas and transactional states within the respective transaction managers
must be mutually consistent. This last case is more complex than the other two because it
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requires changes to the application servers and consequently to the containers and the related
services.

In conclusion, referring to the first replication technique, that has been implemented, we shall
integrate the new mechanism in middleware platform at different stages.

First of all, the Deployer must specify the reference names of the resource adaptor proxies
inside the EAR file mentioned earlier and precisely in the deployment descriptors of each
component. Thus, all the requests to databases are first captured by these new entities. Then, at
the deployment time, the CS enabled must configure the environment and, specifically here, it
must allocate the necessary number of database with their replicas according to the SLS. We
may think to have a DNS system use to specify which databases are labeled as replicas.

At this moment the CS instructs the resource adaptor proxies to enable requests directed to the
booked resource adaptors which interface with the JDBMS. The replicas allocated are then part
of the pool of the resources that must be used during the execution of the application
components. For these reasons, the replicas are being monitored by the Controller Service
(CTRL) whose activity is described in more details in the next Section.

4.5 Controller Service implementation

The CTRL is the middleware service responsible for the adaptive behavior of the architecture.
Modeling an adaptive behavior requires the use of monitors that check the resource states as
well as the performance levels to be achieved, as specified within the SLAs. The monitor
functionality is implemented with the support of a collection of Sensors, as previously explained
in paragraph 3.5.3. Sensors send the performance values to the RS, which collect them into
reports used for producing log files, statistical analysis, as well as irrefutable proofs in case of
disagreements. The data related to the hosted application are sent by the RS to the CTRL, which
compares the QoS achieved with the QoS agreed, given by the CS.

During the execution of the application, if the CTRL detects any difference between the values
above, it adopts an adaptive strategy to enforce the required service. The applied strategy
provokes a reconfiguration of the environment that may trigger a re-negotiation involving the
CS.

Otherwise, if no adaptive strategies can be applied, callback mechanisms can be necessary in
order to allow application to deploy application specific adaptation mechanisms (e.g., handlers
at the application layer).

The pseudo-code shown in Figure 21 describes the protocol used by the CTRL.
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Fig. 21: Controller Service protocol

5 Concluding remarks

In this Report we have described the “interim” (see below) TAPAS architecture for application
hosting we propose, and examined possible implementations of this architecture within two
specific open source application servers; namely, Jboss [JBOSS 2003] and JOnAS [JONAS
2003].

In essence, our architecture extends these application servers with two principal services that
provide support to QoS-aware containers. Specifically, this architecture i) derives from the SLA
[Beckman et al. 2002] the non functional properties an application may require from its run
time environment (i.e., its container), ii) configures an appropriate run time environment that
holds these properties in order to execute the application, iii) monitors the execution of the
application in order to assess whether these non functional properties are maintained by the
application run time environment, and, finally, iv) in order to provide the application with a stable
run time environment, reconfigures this environment on the fly if events occur which may
conflict with the required properties.

As discussed in the TAPAS project proposal [TAPAS 2002], working prototypes of this
architecture will be developed in the next 18 months of this project. These prototypes will
implement containers enriched with the services described in this Report, and will provide us
with valuable insight as to possible revisions that may be required to the TAPAS architecture we
have proposed in this Report (hence the use of the term “interim”, above).
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