
 1

A Policy Based Approach for Automated
Topology Management of Peer To Peer

Networks and a Prototype Implementation

Antonio Di Ferdinando
School of Computing Science

University of Newcastle
antonio.di-ferdinando@ncl.ac.uk

Paul Mckee
BTExact Technologies

Adastral Park
paul.mckee@bt.com

Alessandro Amoroso
Dept of Computer Science

University of Bologna
amoroso@cs.unibo.it

Abstract: Peer-to-Peer (P2P) is a flexible architecture that let a network grow up in an
arbitrary way by adding more and more peers providing resources to the whole
system. If uncontrolled, however, this growth might lead to stability and reliability
problems, due to the fact that any host might join the network, no matter whether it
may provide guarantees or not. Another problem that might occur is the difficulty to
administrate the network due to its possibly uncontrolled growth and its frequent
topological changes. The focus of this paper is to describe an approach to
administration’s automation based on the systematic use of policies. The goal is
achieved by means of an evaluation of the resources owned by each host, which
addresses the problem of provision od reliable resources. We believe this is a good
solution to both problems. In this paper we will explain how our approach works and
the benefits rising from its use. In order to better test our approach we developed and
tested a working prototype of the system, that we will describe.

1. Introduction

Peer to Peer (P2P) is a convenient and flexible way to share resources between hosts of even
different networks. The typical aim of a P2P is to have more and more resources to share, and
this is achieved by a continuous growth. An uncontrolled growth, perhaps, might lead to
predictable problems. A network with virtually infinite growth possibilities could be hard or
even impossible to manage, causing general stability problems. The frequent topological
changes typical of a P2P network could lead to inconsistency problems. Moreover, the lack of
guarantees on the resources brought by the participating hosts might represent a problem. In
fact, typically there is no selection in the join phase on a P2P network, and a host with no
resources can easily join the network. This could possibly lead to robustness and reliability
problems.
This paper focuses on an approach to provide a higher degree of control in a P2P system. We
make a systematic use of policies as a way for a runtime reconfiguration of the units forming the
network. In order to fully test our ideas, we developed a prototype, named NeToC (Network
Topology Control)[Di Ferdinando 2002] . Its goal is achieved by means of automation and

 2

evaluation of the nodes. The rest of the paper is structured as follows: section 2 describes the of
P2P system used to develop and test our prototype. Section 3 describes the structure of our
system and the internals of NeToC. Section 4 briefly describes the dynamics of our approach.
Section 5 shows the results of some test performed on NeToC. Section 6 plan some future work
on NeToC, while Section 7 draws some conclusion.

2. Initial Scenario

In order to exploit our ideas, we used Hydra, whose prototype implementation had been
extended at BTExact Technologies. Hydra is a completely decentralized computation network
whose fundamental unit is the node, defined as an autonomous entity which acts independently
from the other nodes and decides everything related to a task to execute[Plaszczak 2000].
Structurally, an Hydra network is an acyclic graph, with the nodes representing fundamental
computational units, and the connection edges representing the underlying communication
network. Node can communicate by exchanging messages; a routing mechanism allows any
node to communicate with only its neighbours. The only topological constraint present in the
actual prototype specifies that each node can have up to three neighbours. Every subsequent join
request is redirected to the node’s smallest branch, allowing a balanced growth of the graph in
each direction. Figure 1 shows a typical Hydra network and the redirection of a request.
Hydra nodes are responsible for the distribution and the execution of the received tasks. When a
node is asked to execute a task, it checks its own resources. If they are enough, it executes the
task locally, otherwise it distribute it to its neighbours. Hydra is subject to frequent topological
changes, which represent both a pro, because of the scalability and flexibility of the topology,
and a con, because of communication and management difficulties. Furthermore, it does not
checks any guarantee on the nodes joining the network. It would be possible, for instance, to
distribute a task to a weak, possibly unstable, node which will slow down the computation. In the
case of a huge growth, furthermore, it could eventually be impossible to administrate or simply
control an Hydra network, resulting in a possibly unstable and inconsistent network..

Figure 1 Typical Hydra network and redirection dynamics.

An approach to solve such problems consists in a mechanism able to evaluate each new node’s
resources (in order to guarantee a fair resource sharing) and automate management (in order to
avoid uncontrolled growth).

 3

Most P2P systems leave the node management to an agent running the session. In many of these
contexts, an agent is an autonomous entity responsible to handle every task coming from the
aggregation to the P2P network. This means that there is no concept of system management and,
whereas present, it is static.
Our approach, on the contrary, aims to be dynamic by means of a runtime reconfiguration,
triggered by the reception of a policy.
A policy is defined as a high level concept that is gradually refined into terms that relate more
specifically to the actual infrastructure being managed[Weis 1995, Cassasa Mont et al. 1999]. It
can be seen as a constraint on how (part of) the system should work or the people can use the
system. Many systems use policies o enhance trust within e-service frameworks[Cassasa Mont
et al. 1999], while others use them for QoS control on DiffServ and IntServ environments[Rajan
et al. 1999]. Our use of policies is meant to provide nodes with a reference the node can consult
in determinate situations, and is structured as an XML subset, as seen in [Mckee & Marshall
2001].

3. The NeToC Solution

The solution we propose here to the aforementioned problems is the approach realized in NeToC.
It provides for the construction of a profile of the resources owned by the requesting node, to be
matched against the resources required in the policy owned by the node receiving the join
request. Logically, a carefully designed policy will require enough resources to contribute
significantly to the whole system’s resources, and this will represent a guarantee on the resources
that the joining node will share. The network management automation comes from the possibility
to introduce in the network policies which will be adopted at runtime by the nodes, specifying
the behaviour of the nodes in determinate situations, specified in the policy as well.
The system could be divided in two main parts, the Host Profile Subsystem (HPS), and the
Network Policy Subsystem (NPS). Both these parts take advantage of common auxiliary
functionalities (like XML parsers) contained in another part of the system, outside the scope of
the purposes of this paper. The HPS gains information on the local node and its point of view of
the network, while the NPS is interested in policy management (therefore, in node’s behaviour).
HPS and NPS communicate by calling each other, and together form NeToC’s core system. They
are coupled in a tight way and synchronized. Although the situations to manage are several, for
the purposes of this work, and for the sake of brevity, we will take as an example the join
scenario, since we believe it to be the most common situation to face.
In our approach, we enclose a series of management directives in a policy object and distribute it
throughout the whole network. The scenario to face, together with other information such as
rules to apply and target nodes of the policy, are contained in the same policy object. The
policies are injected in the network by the authority having the (previously checked) rights to do
it. A node retains any policy that meets its characteristics, and retransmits all received policies,
according to its routing rules. Since the target node of a policy is identified by its characteristics
too, a policy injected in the network will possibly reach all the nodes that meet them, lightening
the management efforts by handling the behaviour of more than one node with just the
systematic distribution of one policy. The distribution of a policy follows a very simple
controlled flooding mechanism, starting from the local node. The control on such algorithm
come from the fact that a node distributes the policy only to those neighbors that still have to
receive it.

 4

The HPS relies on the meta data handler entity and the node profile object, associated to each
node, which contains an assessment of the set of resources owned by the node. The meta data
handler is mainly concerned with handling the profile, as well as the object I/O between nodes.
It is responsible, therefore, for the creation and evaluation of the node profile and the I/O to/from
neighbours. The profile object contains a minimal set of information about both hardware and
software resources of the node.
The NPS relies on the policy object which contains, apart from the aforementioned set of rules,
information about the authority issuing it, the host sender and receiver, the rules the receivers
must respect, and some topology information. Each host can adopt only one policy at a time.
Policies may or may not expire, and can be replaced by other policies. An interesting feature of
our approach, is that it is possible to introduce more than one policy in the network, since a
policy object includes one or more separate target hosts. The possibility to specify such targets
by an enumeration of hosts (IP addresses or names) or entire domains, makes possible and easy
for a policy to reach a possibly wide number targets at the same time. Policies are mutually
disjoint and does not influence other eventual policies circulating inside the network at the same
time. This makes possible the contemporary circulation of more than one policy and the possible
partition of the network in many dedicated sub networks. Of course conflicts may happen, when
a node is targeted from two contemporary policies. In such case the conflict is solved in the
simplest way with the node adopting the last policy received.

4. NeToC In Action

A new Hydra node can join an existing network or create a new network; in both the cases the
aggregating process is automatically managed by the policy mechanism. As we mentioned
above (Cfr. Section 2), if a node for some reason cannot fulfil the join request, redirects the
request to its smallest branch. If a node is refused by all of the nodes in the network it meets
along its redirection path, it aborts. In the initialization phase, the new node evaluates its own
resources and generates an XML object called profile.xml. Once created, the node asks to a
specified Hydra node join the network, by sending its profile. The Hydra node examines the
profile of the new node and either accepts the connection by sending to the new node the current
policy, or refuses redirecting the connection request to its smallest branch. If the requesting
node’s profile meets the Hydra node’s policy requirements, the connection can take place. The
one just mentioned is the classic example of scenario automatically handled by the system,
without a direct user intervention. Since the rules governing the node’s behaviour are specified in
the policy, and the policy is, in general, directed to more than one node, the same policy is useful
to regulate the behaviour of several nodes, automating node’s management. By matching the
resources specified in the profile object of the requesting node with the ones requested in the
policy receiving node, we check whether the node is capable to share significant resources or
not. By performing this check to each requesting node, we guarantee consistency and (possibly)
robustness in terms of resources.

5. Tests

The tests performed were aimed to verify the respect of the specification and NeToC’s own
performances, and have been conducted on a network provided by the University of Bologna
composed by machines with heterogeneous configurations.

 5

The respect of specification implies NeToC to have a predictable expected behaviour in the
scenarios it has been designed for. The idea here is to build an Hydra network and introduce in it
several different policies from the most general, with a few requirements, to the most particular,
which may lead the network to a partitioned network. The latter represents the borderline case,
and policies introduced aimed to build networks like, for instance, data storage networks, by
including hosts with heavy storage facilities; distributed calculus networks by including hosts
with very powerful and possibly multiple CPUs as well as a large amount of transient space. All
of the networks were correctly built, emphasizing a predictable behaviour of NeToC, which
resulted to be reliable.

Figure 2 Performance comparison based on topological rules.

To investigate the performances of NeToC system, we examined mainly the efficiency of the
distribution of the policy inside the network. Again, we built several Hydra networks but this
time we differentiate them by varying the allowed number of neighbour for each node (named
N). We let this parameter vary from 2 to 6. The results of this simulation is showed in Figure 2.
The fact that the more N is higher, the more the policy distribution is faster is predictable and can
be explained by saying that by increasing N we inherently increase the degree of parallelism of
the network. What, instead, result interesting is the fact that for N=6 the line seems to be lightly
swinging as you can note from Figure 3. This let us suppose some kind of “overload”, that could
eventually lead the system to a “saturation point” in which the parallelism degree (and the
performance) will start to decrease. This phenomenon could be explained by thinking that the
policy distribution is a sequential operation, and a high number of nodes could slow it down,
letting us argue that there will be a N>>6 for which this process will start to became inefficient.
From this comes the consideration that a high degree of parallelism does not necessarily means a
high efficiency, and in our context a good value for N, i.e. the good number of neighbors, would
be 3 (the default number) or 4. Obviously, this consideration must be related to the network we
tested the prototype in, and could eventually be not true on a network made by computers with
other equipment (for instance, multiprocessors). The performance tests showed, moreover, that
the only factors able to slow down NeToC execution are external to NeToC, like the network
latency of the passage through firewalls, and let us argue that NeToc’s integration in the Hydra
environment is lightweight.

 6

Figure 3 Swinging performance for N=6.

6. Future Work

As stated in the abstract, NeToC is just a prototype. Therefore, many are the directions in which
it can be improved. One should focus to an in depth study of other situations capable to be
handled by means of policies. In particular, situations like leave (voluntary and not) and rebuild
(topological rebuilding) have been proven to be very important for the complete development of
the prototype. Other directions could possibly focus on including Role Based Access Control
(RBAC)[Moyer & Ahamad 2001] techniques as part of the policies, to provide authority based
access to design and distribution of a policy. Further improvements might involve an automatic
peer discovery system (whose study has already began), a graphic tool for policy design.

7. Conclusions

We proposed an automated way to manage the topology of P2P networks, and presented a
prototype implementation of our system, NeToC. The tests performed on it verified that it is
possible to manage the topology of a highly scalable P2P network by means of policies
distribution. We found out, moreover, an optimal topology structure which allowed us to take
full advantage of this approach, letting the network grow in an arbitrary way but with some
control on its growth and without slowing down the computation speed. Evaluation tests has
proven the efficiency, correctness and robustness of NeToC, and we believe that the system is a
promising instrument to the enlightenment of management efforts in P2P systems.

References

[Cassasa Mont et al. 1999] M. Cassasa Mont, A. Baldwin and C. Goh. “Role of Policies in a
Distributed Framework”, in Proceedings of POLICY 1999, Bristol, UK, November 1999.

[Di Ferdinando 2002] A. Di Ferdinando. “A policy based XML meta data system for a dynamic
network topology management”, technical report, BTExact Technologies, July 2002.

 7

[Mckee & Marshall 2001] P. McKee and I. Marshall. “Behavioural Specification Using XML”,
British Telecom Technology Journal, 2001.

[Moyer & Ahamad 2001] M.J. Moyer and M. Ahamad. “Generalized Role Based Access
Control”, in Proc. of The 21st International Conference on Distributed Computing
Systems(ICDCS), April 16 - 19, 2001, Mesa, AZ.

[Plaszczak 2000] P. Plaszczak,“Hydra: Decentralised Distributed Computing Environment.
System Design and Prototype Implelentation”. MSc thesis, University of Mining and Metallurgy
in Kraków, Poland, 2000.

[Rajan et al. 1999] R. Rajan, D. Verma and D. Kamat. “A Policy Framework for Integrated and
Differentiated Services in the Internet”, in IEEE Magazine, September/October 1999.

[Weis 1995] R. Wies,“Using a classification of Management Policies for Policy-Specification
and Policy Transformations”, in Proceedings of the IEEE/IFIP International Symposium on
Integrated network Management, Santa Barbara, CA, USA. 1995.

