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Summary

Practical networked systems are under increasing obligations to provide cer-
tain levels of Quality of Service (QoS) to end users. In TAPAS, we focus on
the development of QoS enabled multi-party communication to support ap-
plications that require information dissemination to many processes (e.g., in
auctions, distributed games). For such applications we will concentrate on QoS
properties of fault tolerance, availability, and timeliness. Currently, strict separ-
ation exists between the middleware that executes application services and the
network, so providing services that go beyond the best effort is difficult. Ap-
proaches to distributed system designs have thus far assumed two broad classes
of computational and communication models: in the synchronous model, pro-
cessing and communication delays are considered to be uniformly distributed in
a known range; in the asynchronous model on the other hand, delays are finite
but without any assumption on the ability to deduce delay bounds or delay
distribution. So, any bound on delays, deduced however judiciously, is subject
to being violated.
We here introduce a generic system model called the probabilistic asynchronous
model which we claim characterises the context in which many Internet-based
applications are built. Specifically, our model regards that basic services and
system components (e.g., network services) do meet their performance require-
ments most of the time, and occasionally they may not; only when they dont,
they adhere to the classical asynchronous model. Our design approach will draw
from, and combine probabilistic design techniques and asynchronous ones. Its
objective is to render systems that adaptively meet QoS obligations to the end
users when system components meet their QoS guarantees or violate them only
marginally; eventual correctness is never compromised when components fail in
their QoS obligations.
Design and implantation of a QoS enabled reliable broadcast service using the
principles of the probabilistic asynchronous model is described. It is possible
that the QoS guarantees agreed by underlying network system are violated for a
prolonged period. These violations can lead to the broadcast service being un-
able to meet its QoS obligations. An important aspect of a QoS enabled service
is that it needs to be adaptive: it monitors the QoS offered by the underlying
layer and then adapts the protocol behaviour in an effort to meet the agreed
QoS to users. The QoS monitoring subsystem is thus an important part of the
service. The QoS monitoring subsystem of our reliable broadcast service has
been designed using the principles described in the deliverable report D10, on
QoS Monitoring.
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1 Introduction

The Internet is increasingly being used by organizations for offering and procur-
ing services. Business outsourcing and application service provisioning [1] are
some obvious manifestations of this trend. Obviously, when services are being
traded, the networked systems providers that host such services come under
obligations to offer varied levels of Quality of Service (QoS) to end users and to
maintain the QoS level chosen by the users. These obligations arise from the
need to retain existing customers and attract new ones in a highly competitive
business environment. It therefore becomes essential that the underlying sys-
tem be able to evaluate the feasibility of QoS provisioning prior to accepting an
end-users QoS request and adapt to unforeseen changes in resource availability;
i.e., it needs to be built QoS adaptive.
There are many QoS attributes that can be generally associated with a system;
latency (or timeliness) and reliability are common ones and will be the focus
of this report. Intuitively, the end-to-end QoS (e.g., latency) offered at the sys-
tem level, and seen by the end user, is an aggregation (of some sort) over the
QoS offered by the various subsystems that make up the system. A subsystem
provides certain services to other (consumer) subsystems, by making use of the
services provided to it by some other (producer) subsystems. (End-users consti-
tute the ultimate consumer not regarded to be a part of the system.) When a
service request with some specified QoS is made, a subsystem, if QoS adaptive,
must, where possible, adapt its operations to accommodate the QoS request by
itself; if self-adaptation alone is not possible, it should evaluate the enhanced
QoS support which one or more producer subsystems need to sustain for the
request to be satisfied. The request cannot be met if a producer subsystem can-
not support the enhanced QoS. At the bottom-end of this producer-consumer
chain are the ultimate producer subsystems that directly manage the resources
themselves: communication subsystems (CS), operating systems (OS) and stor-
age systems (SS).
Thus, building a QoS adaptive system requires that the resourceful subsystems -
CS, OS and SS - offer services with QoS guarantees and dynamically respond to
higher level requests for enhanced QoS support. Of these three resourceful sub-
systems, the service providers normally own computational resources, operating
systems and storage systems. Furthermore, techniques are available for evaluat-
ing available latency, throughput and possible failure rates of OS (real-time OS
in particular) and SS for a given load and operational environments. However,
the situation is different with the CS if it operates on a best-effort basis over
the Internet. In such an environment, the application related message traffic
needs to compete for bandwidth and survive router congestions, and the CS
cannot therefore offer meaningful QoS guarantees. This means that there must
be means to reserve bandwidth and accord priority to traffic flows so that the
CS can also offer QoS guarantees and be responsive to QoS requests.
Developments in network service provisioning indicate that such a CS can be
obtained by procuring it as a service from the network service providers. In-
ternet Service Providers (ISPs) offer to their customers QoS guarantees on the
end-to-end network performance by careful network design (provisioning) based
on elegant resource management models for the Internet (see [2] for example).
These models take into account extensive measurements made in the past and
the network providers understanding of the typical source behaviours and the
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typical traffic patterns. For example, the AT&T managed Internet service a
leading ISP offers 99.99% network availability, a monthly average latency of 60
milliseconds (within the US), and a packet loss rate of less than 0.7%.
We will assume in this report that the CS, for the purposes of building a QoS ad-
aptive system, is provided by an ISP together with well-defined and dynamically
negotiable network performance guarantees encapsulated in what the industry
calls the Service Level Agreements (SLAs). Hosting distributed application is
known to be considerably simplified by the availability of a group communica-
tion (GC) middleware system. A GC system offers many services such as reliable
multicast [3, 4], consensus or atomic broadcast, and non-blocking atomic com-
mit [5]. Many GC system have been built in the past [6]. Some assume the
classical synchronous model, and most others the asynchronous model or a vari-
ation of it. Observe however that the QoS guarantees offered by the ISPs (even
to the high-end users) are not deterministic, as regarded within the synchronous
model; rather they are probabilistic in nature, admitting that the QoS metrics
promised may not be met on odd occasions and that such violations would be
within the remit of the stated probabilities. Note also that when the network
is not guaranteed to be 100% loss-less and 100% available, a message may have
to be retransmitted and may therefore take an arbitrary amount of time.
Next section will present a probabilistic model that characterises the environ-
ment we have considered for building a QoS GC middleware system, the system
architecture as per which the subsystems get structured and interact, and the
subsystem architecture identifying the internal structure of a subsystem and the
requirements which the protocols and algorithms of a subsystem need to meet.
The system architecture will conform to the principles of design composability
[7]: an efficient and modular construction of a QoS adaptive system requires
that its subsystems are built to be QoS adaptive as well. The subsystem archi-
tecture will lead to identification of the following requirements: the probabilistic
protocols of a subsystem must be designed with configurable parameters; and,
they should be associated with algorithms using which the protocol parameters
can be appropriately set in order that the subsystem can be made QoS adaptive.
The last two subsections of the next section are devoted to describe a reliable
multicast protocol satisfying such requirements. Section 4 describes then APIs
for the reliable multicast protocol just described, and the document terminates
after section 5, which validates our ideas providing proof of performance and
reliability of the protocol implemented.
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2 The Model and System Architecture

2.1 The Probabilistic Model

The system consists of a group G of n, n > 1, distributed nodes that com-
municate using an ISP supported communication subsystem (CS). Each node
host a distinct process pi, 0 ≤ i ≤ n− 1. The processes of G are engaged in a
multiparty coordination. They know each other’s identifiers and IP addresses.
Without loss of genarality, the numbering of processes is assumed to imply a
‘seniority’ ordering: process pi is said to be ‘more senior’ than process pj if
i < j. A node or the process hosted within it functions correctly until and un-
less it crashes. A node (or a process) that does not crash is said to be correct.
To present the probabilistic model, we will assume a global clock which is not
accessible to processes.

• Processing Delays : Within a correct node, any task that is scheduled to be
executed at time t, will be executed at t + π where π is a random variable
with some known distribution.

• Storage Delays : When a correct process initiates a storage request (for
storing or retrieving of data) at time t, the request will be correctly pro-
cessed at t+λ, where λ is a random variable with some known distribution.

• Transmission Delays: If a correct process i sends a message m to another
correct process j at time t, then

– m is delivered to j (i.e., m arrives at the buffer of j) with some
probability 1− q (m may be lost in transmission with probability q).

– if m is not lost, it is delivered at t + δ where δ is a random variable
with some known distribution.

If the distributions of π, λ, and δ are uniform with some known mean and q = 0,
then the probabilistic model refers to the well-known synchronous model which
permits upper bounds on π, λ, and δ to be determined with certainty. The
asynchronous model considers the bounds on the delays π, λ, and δ to be finite;
neither the bounds nor the delay distributions can be known with certainty.
For example, any bound on delays, however judiciously deduced, is vulnerable
to being violated with unknown probabilities. The probabilistic model, on the
other hand, assigns probabilities or coverage to quantification of delay bounds.
Appendix A compares the features of the model with those of several known
models.

2.2 System Architecture

The GC system lies on top of the ISP’s network and the kernel is below the ap-
plications to be hosted. As per the the ISO OSI hierarchy, it can be seen at level
5 (session) with network (layer 4) providing a basic (unicast) communication
support. It can be seen in Figure 1.

As stated earlier, GC middleware system offers a variety of services that ease
application hosting. The services typically offered are:
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Figure 1: General architecture.

• Reliable Multicast (unordered)

• FIFO Reliable Multicast

• Uniform Reliable Multicast (unordered or FIFO)

• Causal Ordered Multicast

• Total Ordered (or Atomic) Multicast

• Group Membership

• Consensus or agreement

• Virtually Synchronous Communication [3, 12]

The (unordered) reliable multicast service ensures that a multicast m is received
by either all or none of the correct members of group G and a correct members
multicast is received by all other correct members. A FIFO reliable multicast
ensures that a multicast m is delivered reliably and also as per the order in
which the broadcaster of m sent. More precisely if m1 and m2 are multicast by
a given process in that order, then delivery of m2 will be after that of m1. Sim-
ilarly, the causal and total ordered services facilitate ordered delivery of some
nature (see [4]) together with the multicast reliability.
Group membership service provides a realistic view to the application as to
which processes are deemed to have crashed. For this view to be consistent, it
needs to reach agreement (using the consensus service) with processes regarded
to be operative. Virtually synchronous communication service will synchronise
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the update of membership views with the messages delivered to application so
that the view changes are seen by all application processes identically with re-
spect to the set of messages delivered.
From the discussions above, it becomes obvious that a middleware service can
be implemented as a service on its own (basic service) or by using other ser-
vices. For example, referring to (Figure 1), the uniform FIFO reliable broadcast
service can be built using FIFO reliable multicast which in turn is built using
unordered reliable broadcast. In presenting the architecture for a QoS adaptive
GC system, we will take a view that a given middleware service is offered using
N , N ≥ 1, services in a hierarchical manner. Obviously, the more sophisticated
is the service requested by an application, the larger will be N ; the unordered
reliable multicast service, being the most basic middleware service, will have
N = 1.

QoS Adaptive Middleware Architecture The model characterises the be-
haviour of subsystems CS, OS and SS which manage respectively the capacity to
communicate, process and store information. These subsystems are collectively
denoted as S0 in Figure 2. For a QoS adaptive system to be feasible, S0 must
export a QoS management interface in addition to the traditional service inter-
face. Using this interface, a higher-level subsystem S1 can request S0 whether a
specified distribution for each of the delay variables (π, λ, δ) and a specified loss
probability (q) can be supported; this in turn would help determine whether a
given set of requirements on processing, storage and bandwidth capacities addi-
tionally needed to support an end user requirement can be met. If the request
for a specified distribution for each of the delay variables cannot be supported,
S0 may respond with the delay distributions which it can currently support.
Each middleware subsystem Si, i ≥ 1, will have two components: a service
component (servicei) and QoS management component (qosi):

• servicei implements a specified service tolerating at most ϕ node crashes;

• qosi evaluates the delay distributions of servicei as a function of such
distributions offered by servicei−1. qosi will also take into account the
overhead that servicei would incur given the size of input from the higher
level.

At the top of the stack are the application (A) and its QoS manager (qosA).
When a user submits a request with the required (probabilistic) delay and
throughput guarantees (interaction (i) in Figure 2), the application QoS man-
ager qosA computes and passes down the QoS guarantees expected of SN to
qosN . The qosN computes the guarantees expected of SN−1 so that the guar-
antees required by qosA can be met. The guarantees expected of SN−1 are
passed down to qosN−1. The QoS feasibility evaluation thus travels down to S0

which computes if it can maintain the necessary mean and the variance of delay
distributions for the overall resource requirement. If it is possible, then the user
request will be accepted; else, S0 returns the mean and variance it can sustain
and the reverse computations are made by successive qosi upwards (interaction
(ii) in the figure). The user is then informed of the QoS guarantees the system
can offer.
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Figure 2: Structure of a Fault-tolerant QoS Adaptive System.
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Structure of a Subsystem Suppose that a user request is accepted for a
set of given QoS metrics. Each qosi, 1 ≤ i ≤ N , records the QoS requirements
that servicei needs to meet (interaction (iii) in Figure 2). The service request is
submitted to the application whose execution invokes various servicei (interac-
tion (iv) in Figure 2). The (fault-tolerant) protocol that implements servicei is
designed with configurable parameters; the choice of these parameter values will
influence the protocol behaviour and thus the QoS offered by servicei. These
parameters can be regarded as QoS control knobs, and, in what follows, we will
term servicei as (QoS) controllable protocol based servicei, or simply as CPSi.
The responsibility for setting appropriate parameters is upon the QoS manage-
ment component, qosi, so that CPSi (or servicei in Figure 2) can meet its QoS
obligations in providing its services to servicei+1. This parameter setting and
the feasibility analyses carried out prior to accepting the user request will require
that qosi be equipped with algorithms to evaluate the performance of CPSi in
terms of these parameters. Specifically, qosi should be able to evaluate the QoS
metrics offered by CPSi for a given set of parameter values (e.g., latency for a
given level of redundancy) and vice versa, and also derive the parameter values
from the QoS guarantees from servicei−1 below (e.g., the level of redundancy
for a given loss probability) and vice versa. The module which contains these
evaluation algorithms is called the (QoS) Negotiation module and offers a set
of services called the (QoS) Negotiation Services. As a side remark, developing
algorithms for (QoS) Negotiation module will involve stochastic modelling and
performance evaluation. Tractable performance analyses generally warrant ap-
proximations to be taken and we would propose that such approximations tend
to underestimate the actual performance. This means that servicei will tend
to perform better than predicted by Negotiation module, offering a better QoS
to servicei+1 than promised. The overall system will thus have an inherent
tendency not to fail on the end-to-end QoS promised to the application. It is
possible that the QoS guarantees agreed by the ISP are violated for a prolonged
period. These violations can lead to various higher level subsystems being un-
able to meet their QoS obligations at run time. So, a requirement for every
given qosi is to monitor the QoS offered by servicei−1 to CPSi, and attempt to
re-adapt the protocols of CPSi so that CPSi still maintains its QoS guarantees
to servicei+1. The monitoring and reporting activities are carried out by the
QoS Monitoring module within qosi, and its services are collectively called the
Monitoring Service. Figure 3 presents the internal structure of a middleware
subsystem.

Referring to Figure 3, the interactions between the three modules of a sub-
system can be summarised as below.

1. The servicei is issued a service request with some specified QoS metrics
shown in the figure as (1). We will suppose that the service request has
already been QoS evaluated and agreed by the subsystem (see interaction
(iii) in Figure 2).

2. The Negotiationi sets the appropriate parameters which the CPSi should
use to process messages related to this request (2).

3. Messages related to this request are processed by CPSi and passed down
to servicei−1 via Monitoringi (3a, 3b) which tags the appropriate down-
stream messages so that the tagged ones can be monitored by Monitoringi−1.
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Figure 3: Layer interaction

4. Similarly, CPSi receives the up-stream messages via Monitoringi (4a.
4b) which collects data to compute the QoS metrics offered to CPSi.

5. The QoS metrics computed by Monitoringi are periodically sent to Negotiationi

(5) which in turn re-adapts the parameter values of CPSi if necessary and
if possible.

2.3 Layer Structure

Summarizing what said so far, the protocol has a layered architecture, arranged
in such a way to form a stack. Each layer offers a different service, that re-
lies on the service offered by the lower layer. The bottom-most layer offers
an unordered reliable multicast service, while the top-most layer offers more
sophisticated services such as total or FIFO ordering service. The full, most
complete service is obtained by going through the whole stack.
A single layer is composed by three sub-services: the Core Protocol Sub-service
realizes the service offered by this layer by processing both incoming and out-
going data. It relies, for its correct execution, on parameters generated after
successful negotiation of QoS service with the user by the Negotiation Sub-
service. Such parameters represent a guarantee that agreed QoS service can
be achieved, validated by a constant monitoring of the QoS Monitoring Sub-
service whose aim is to probabilistically model a certain set of resources that
will provide the basis for evaluations in the Negotiation Sub-service.

Figure 4 shows an example of a protocol providing FIFO Reliable multicast
service. Two observations can be made: the first is the position of the QoS
Monitoring Sub-service inside a layer. At reliable multicast layer it is really
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Figure 4: Protocol for Total Ordering

monitoring the lower layer, Network in the picture. Reliable multicast activity
is then monitored at FIFO layer. The idea behind this mechanism of monitoring
is that a layer relies, for its own execution to be correct, on the lower layer, and
is so in its interest to directly monitor that no mistakes or faults occur at that
layer.
The second observation is that QoS Monitoring Sub-service at reliable multicast
layer is an extra security adopted by the protocol itself. In an ASP context,
in fact, the layer called Network in the picture would be substituted by an
ISP, which would typically provide all needed data about the network. We
could, then, choose to trust in data provided by the ISP rather than using the
QoS Monitoring Sub-Service at reliable multicast layer. This is an important
consideration because means that should the QoS Monitoring Sub-service fail,
we could still guarantee adaptation inside the reliable multicast protocol.

2.4 Architecture for Mutual Monitoring

Figure 5 shows an example of mutual monitoring. The Core Protocol Sub-Service
(CPS) is responsible for implementing the logic of the Group Copmmunication
System (GCS) and providing user access to reliable multicast. We have de-
scribed the user in our example as accessing services (AS). Such services may
be considered the application or protocols responsible for higher level message
guarantees (e.g., message ordering). The CPS requires access to underlying net-
work services to enable message dissemination across computer networks. We
describe such services as network services (NS). An NS may provide QoS guar-
antees to the CPS (e.g., mean message delivery latency) and so may directly
influence the way the CPS functions.

The monitoring requirement is satisfied by Metric Collectors (MeCo). A
MeCo is co-located with a protocol layer (identified by subscript) and is re-
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Figure 5: Deployment of Mutual Monitoring of QoS for reliable Multicast.

sponsible for monitoring the QoS of a protocol layer (identified by superscript).
A MeCo collects QoS metrics and passes them to the Measurement Service. The
measurement service then correlates information gained by one or more MeCos
and provides a suitably formatted message for consumption by the Evaluation
and Violation Detection Service. The evaluation and violation detection service
is responsible for informing protocol layers of SLA violations.
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3 Design and Description of a Reliable Multic-

ast Protocol

This section presents the probabilistic Reliable multicast protocol, the most
basic protocol in our QoS adaptive GC system. The protocol is designed with
configurable parameters using which QoS guarantees on offer can be set to the
desired level. The guarantees are obviously probabilistic in nature and fall into
two broad catagories: reliability and latency. We first recap the system context
and then present the assumptions which the protocol design makes.

1. In a group G, of distributed processes numbered 1, 2, . . . , n: G = {p1, p2, . . . , pn},
for some known (n > 1), a process can either be opeartive or crash to be
inoperative permanently. A process that does not crash during an execu-
tion of the protocol is said to be correct in that execution.

2. Processes know each other’s numbers and the numbering of processes im-
plies a ‘seniority’ ordering: process pi is said to be ‘more senior’ than
process pj if i < j.

3. Each process has a primitive send(m) using which it can send a message
m to another process.

4. The send(m) is successful if m is deposited in the receive buffers of the
destination process.

5. The communication subsystem (managed by an ISP) assures that (i) a
send(m) operation is successful with a known probability 1 − q, i.e., m

is lost with probability q; and (ii) the transmission delay of a successful
send(m) operation is an independent random variable with some known
distribution.

We make the following simplifying assumptions:

• Processes are over-provisioned on computational and communication ca-
pacity. Consequently, a process can instantaneously receive a message
which the communication subsystem deposits into its receive buffer. This
means that the message transmission delay will be the inter-process com-
munication delay.

• For the purposes of simulations, the transmission delay distribution will
be assumed to be exponential with mean d.

3.1 Specification of Protocol Guarantees

The protocol exports two primitives: RMCast(m) and RMDeliver(m). When
a process wishes to multicast a message reliably to processes in G, it invokes the
operation RMCast(m). This process will be called the originator of m. A mes-
sage m sent by invocation is delivered to a destination process by RMDeliver(m).
The protocol offers the following reliability guarantees (in probabilistic terms):

1. V alidity If the originator of m does not crash until its invocation of
RMCast(m) is complete, then all operative destination processes deliver
m with a probability V which can be made arbitrarily close to 1 (by
appropriate choice of parameter values).
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2. Agreement (or Unanimity). Irrespecive of whether or not the originator

of m remains operative to complete its invocation of RMCast(m), if a
destination process delivers m then all correct destination processes deliver
m with a probability A which can be made arbitrarily close to 1.

We note here that the agreement guarantee actually refers to the uniform

agreement property: even if a destination process crashes shortly after deliv-
ering m, then all correct destinations are guaranteed to deliver m. This means
that if the crashed process has invoked RMCast(m′) soon after delivering m,
then any correct process that delivers m′ is guaranteed to deliver m as well.
Observe that A will be 1 if n = 2, i.e., if there is only one destination process.
The protocol offers the following guarantees on latency metrics.

1. The interval between an originator invoking RMCast(m) and the first
instant thereafter when all correct destination processes have received m,
does not exceed a given bound, D, with a probability, rD, which can be
evaluated in advance.

2. If, following an invocation of RMCast(m), the message arrives at a correct
process, then it will arrive at all other correct processes within a further
interval of a given length, S,with a probability, uS , which can be evaluated
in advance.

These properties are sometimes referred to as latency bound and relative latency
bound, respectively. They enable an application developer to reason about
timeliness: an application process that invoked RMCast(m) at time t, can
be programmed to regard at time t+D that m is delivered to all correct destin-
ations; a destination process that has delivered m (through RMDeliver(m)) at
time t can be programmed to regard at time t + S that all correct destinations
have delivered m.

3.2 QoS Feasibility Evalutaion and Adaptation.

From the description above, it can be seen that the probabilistic guarantees
offered by the protocol can be evaluated in advance given a set of parameter
values or can be changed to the desired effect. This aspect is utilised by the asso-
ciated Negotiation module to evaluate the feasibility of QoS support required
by a request. For example, an application that wishes to perform a reliable
multicast can specify the desired success probability, R, and the latency bound,
D. The interface would respond by evaluating rD and comparing it with R: if
rD ≥ R, then the specification is achievable; otherwise not. Clearly, the larger
the value of D, the higher the achievable probability of success. Similarly, a user
or an application that wishes to be delivered a reliable multicast can specify a
desired success probability, U , and a relative latency bound, S. The interface
would evaluate uS and compare it with U : if uS ≥ U , then the specification is
achievable; otherwise not.

Moreover, two forms of adaptation are possible at run time:
Adaptation for reduced message overhead. The evaluation of rD and uS

involves taking approximations for resaons of analytical tractability. These
approximations are deliberately chosen to have a bias for underestimate the
evaluated performance. During the course of a protocol execution, a process is
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equipped to sense that the protocol is performing better than expected for a
given R, D or U , S, and adapt parameters that would result in smaller message
overhead.

Adaptation to observed QoS perturbs. When QoS monitor reports that the
communication subsystem is not maintaining the promised QoS metrics, then
the protocol may not be able to sustain R, D or U , S which seemed plausible
during the QoS feasibility evaluation. The protocol offers parameters which,
when reset appropriately, can avoid failing to meet a given R, D or U , S due to
unexpected QoS perturbs.

These claims on QoS feasibility evaluation and parameter adaptation will be
examined through simulations.

3.3 Protocol description

The reliable multicast protocol has three features which are designed to assure
high probability of success at tolerable cost in message traffic:

• (a) The execution of RMCast(m) comprises more than one invocation of
a broadcast(m) operation. Each of these invocations concurrently sends
the message m once to each destination.

• (b) The responsibility for invoking broadcast(m) initially rests with the
originator of the message, but may devolve to another process, and then
to another, in consequence of crashes, message losses or excessive delays.

• (c) In the event of such a devolution, a decision procedure attempts to
select exactly one process to take over the broadcasting responsibilities.

These features can be described as Redundancy, Responsiveness and Selection,
respectively. The Redundancy of the protocol is controlled by two parameters:

• An integer, ρ, specifies the level of redundancy; the originator of a message
makes ρ + 1 attempts to broadcast it (if operative); these attempts are
numbered 0, 1, . . . , ρ; typically, ρ ≥ 1.

• The interval between consecutive broadcasts is of fixed length, η; that
length is chosen to be as small as possible, but sufficiently large to make
any dependencies between consecutive broadcasts negligible.

One way of choosing η is to require that the transmission delay between a source
and a destination is less than η with a given probability, α (reasonably close to
1). In the case of exponentially distributed delays with mean d, η is given by

η = −d log(1 − α) .

More conservatively, η can be chosen so that it exceeds the largest of n − 1
parallel transmission delays with probability α. In the exponential case, that
choice would imply

η = −d log(1− α
1

n−1 ) .

Responsiveness. If the originator of a message crashes during its redund-
ant broadcast attempts, the destination processes respond by taking over the
broadcasting responsibility upon themselves. To facilitate this takeover, each
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copy of a message, m, has fields m.copy, m.originator and m.broadcaster; these
specify the number of the current broadcast attempt (0, 1, . . . , ρ), the index of
the originating process, and the index of the process that actually broadcast the
message m, respectively. The values of m.originator and m.broadcaster will be
different if a destination process carries out the broadcasting of m.

Every process that receives a message, m, such that m.copy = k < ρ, must
be prepared to become a broadcaster of m if necessary. It does so by setting a
timeout interval of length η +ω, with some suitable value of ω (η is the interval
between consecutive broadcasts, while ω accounts for differences in transmission
delays, or ‘jitter’). If copy k + 1 of m arrives from the broadcaster of copy k

before the timeout expires, then all is well with that broadcaster; the receiver
process sets a new timeout of η+ω for the next copy (if there is one). Otherwise,
the receiver pessimistically assumes that the process m.broadcaster has crashed
while broadcasting copy k of m, and that it is the only process to have received
any copy of m. It therefore prepares to appoint itself as a broadcaster of copies
k, k + 1, . . . , ρ.

However, the m.broadcaster may not in fact have crashed; copy k + 1 of m

may just be delayed unduly or lost; moreover, even if m.broadcaster has crashed,
this receiver may not be the only process that has observed the crash. In order to
avoid multiple receivers becoming broadcasters unnecessarily, a further random
wait, ζ, uniformly distributed on (0, η), is added to the timeout interval η + ω.
If a copy number k or higher is not received before the expiration of ζ, this
receiver appoints itself as a broadcaster. Otherwise it sets a new timeout of
η + ω.

Selection. The protocol guards against multiple self-appointed broadcasters.
It requires that any broadcaster with index i, whose latest broadcast has been
of copy k of the message, should relinquish its broadcasting role in any of the
following circumstances:

• 1. Process i receives a message m such that m.copy = k and either
m.broadcaster < i or m.broadcaster = m.originator. That is, a more
senior process has assumed the duties of broadcaster, or the originator
has not in fact crashed.

• 2. Process i receives a message m such that m.copy > k. This would
happen if process i has missed one or more copies of m, and now learns
that another broadcaster is closer to completing the protocol.

Suppose that process i has abandoned its broadcasting role and has set a timeout
expecting a copy, say, k, from broadcaster j. It will have to reset that timeout
if either copy k is received later from a broadcaster more senior than j or from
the originator, or copy k + 1 or higher is received from any broadcaster. This is
necessary because when process j receives the message which process i has just
received, it would relinquish its broadcasting role.

The purpose of these provisions is to avoid unnecessary broadcasts and hence
message traffic, while still making the best effort to ensure that ρ + 1 copies of
each message are broadcast. The idea is that when any broadcaster crashes,
all receivers that time out on η + ω + ζ will briefly become broadcasters, but
after that only one of them is likely to continue broadcasting, at intervals of
length η. That process will be a receiver process if the originator has crashed
or its messages suffer excessive delays. A more detailed pseudo-code description
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of the reliable multicast protocol executed by the process i is presented in the
following subsection and in figure 1.

3.4 Details of the protocol

An execution of RMCast(m) starts by setting the field m.originator, and also
a unique message identifier called m.sequenceNo; then (ρ + 1) invocations of
broadcast(m) are performed, with m.copy = 0, 1, . . . , ρ + 1. The primitive
broadcast(m) sets the m.broadcaster field and concurrently sends m to all other
processes in G.

The protocol for delivering a reliable multicast message is RMDeliver(),
and is structured into two concurrently executed parts. The first part handles a
received message and the second part the expiry of timeout (η + ω). Three
integer variables are maintained for a received message m distinguished by
m.originator, m.sequenceNo:

• max recdi(m) has the largest copy number received for m.

• leaderi(m) has the index of the process from which m with copy max recdi(m)+
1 is expected.

• last own bcasti(m) contains the copy number of m which the process i

broadcast when it last acted as a self-appointed broadcaster.

A received message calls for one or more of the following three actions:

• New m. Variables are initialised and m is delivered (lines 6-12).

• m.copy = ρ. Blocks any future occurrence of the third action (described
next), by setting max recdi(m) to ∞ (MaxInt) (line 13). Note that a
new m can have m.copy = ρ if earlier copies are lost or excessively delayed.

• Change of leaderi(m): The received m indicates one of the circumstances
(described earlier) in which the process i needs to either relinquish its
broadcasting role or change the broadcaster from which the next copy is
expected. A new timeout (η+ω) is set after max recdi(m) and leaderi(m)
are updated (lines 14-20).

When timeout (η+ω) for m expires, an additional timeout ζ is set, during which
a message with appropriate copy number from any broadcaster is admissible. So,
leaderi(m) is set to MaxInt (line 21). If no such message is received, process
i appoints itself as a broadcaster and sets up a thread Broadcaster(m) (lines
22-24). The thread Broadcaster(m) broadcasts m only if the process i remains
to be the broadcaster (i.e., leaderi(m) = i) as per selection rule; otherwise, it
dies (lines 25-32).

Observation A process will use at most one Broadcaster(m) thread for a
given m at any time. Suppose that the timeout(m) expires successively at
times t1 and t2 for process i. The thread created at t1 must die before t2 for
the following reasons.

A thread can be created only after the timeout for η + ω and then another
one for ζ have expired. The timeout for η + ω is set only when leaderi(m) 6= i

19



(line 18). A thread dies within η time after leaderi(m) 6= i becomes true (lines
25, 28). Since η + ω + ζ ≥ η, the first thread dies by the time the next one
is created. The thread pool in practical systems is not unbounded. So, our
protocol makes judicial use of the available threads.

4 API description

The programming language chosen to develop the protocol is Java. This choice
is mainly driven by the Java-native nature of the JBoss application server, used
as reference platform for the TAPAS project.
As said earlier in this document, each layer is composed out by three separated
sub-services that work in tight coordination to offer a reliable service under
respect of required (and agreed) timely guarantees. In order to reflect such
a separation, each sub-service has been implemented as part of a bigger java
package, whose structure is shown in Figure 6. Naming conventions are taken
from the standard java package naming system1. According to these, the pack-
age has been named uk.ac.ncl.cs.subServiceName , where subServiceName

is the name of the sub-service. The protocol makes use of the interface pro-
gramming model, that implies an object to be defined by a Java interface gen-
eralizing object’s properties and letting it be implemented by another method
tied to the context the object is going to be used in. This technique permits a
clear separation of the object’s definition from the actual implementation, allow-
ing adaptation of an object’s definition in many contexts and then reusability.
Moreover, interface programming allows a clear modularization of the architec-
ture, letting the programmer to choose between several ways of implementing
the same object.
In the context of the protocol, general objects have been firstly defined by means
of Java interfaces, while implementation has been thought in the context of the
layer to implement. This makes the protocol highly extensible, since allows for
new services to be easily added to a stack. Each sub-service of the layer is defined
by an interface2. These interfaces have been named NegotiationService,
CoreProtocolService and MonitoringService, and their implementation is
layer dependent. In addition to the three sub-services, a sub-package offering
external services has been created, where at the moment resides a basic protocol
for group formation and management, called GroupManager, and a violation de-
tection service, called ViolationDetector.

In our implementation each protocol layer exhibits interfaces via CORBA
RPC. Via such interfaces, a protocol layer may access message dissemination
services of the protocol layer directly beneath them in the protocol stack. A
CORBA call back mechanism is used by a protocol layer to deliver messages to
protocol layers immediately above them in the protocol stack. Data relating to
the metrics of QoS is passed to the measurement service via the Java Messaging
Service (JMS) by MeCos and then by the measurement service to the evaluation

1The Java standard package naming conventions requires, in order to guarantee uniqueness,
a non-core package to be named by the network domain of the machine, followed by the chosen
name of the package.

2Throughout this document, we will refer to the word interface in the Java perspective,
meaning a Java interface.
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RMCast(m)
(1) m.originator← i; m.SequenceNo← seq number;
(2) m.copy ← 0;
(3) repeat(ρ + 1) times →
(4) {broadcast(m); wait(η); m.copy ← m.copy + 1;}

RMDeliver()
begin
cobegin // message-handling part

(5) receive(m);
(6) if new(m) →
(7) begin
(8) max recdi(m)← m.copy;
(9) leaderi(m)← m.broadcaster;
(10) last own bcasti(m)← −1;
(11) deliver(m); // m is delivered (once) to the application
(12) end

(13) if (m.copy = ρ) → {max recdi(m)← maxInt;}

(14) if(m.copy > max recdi(m)) ∨
(15) (m.copy = max recdi(m) ∧

(m.broadcaster = m.originator ∨m.broadcaster < leaderi(m)) →
(16) begin
(17) max recdi(m)← m.copy;
(18) leaderi(m)← m.broadcaster;
(19) set timeout for η + ω;
(20) end

coend
cobegin

// timeout-triggered, timer-driven part
timeout(m)−→
begin

(21) leaderi(m)← maxInt;
(22) wait(ζ) ;
(23) if leaderi(m) = maxInt →
(24) {leaderi(m)← i; create thread Broadcaster(m);}

end
coend

end
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Broadcaster(m)
begin

(25) while((max recdi(m) < ρ) ∧ (leaderi(m) = i)) do
(26) m.copy ← max{last own bcasti(m) + 1, max recdi(m)};
(27) broadcast(m);
(28) max recdi(m)← m.copy;
(29) last own bcasti(m)← m.copy;
(30) wait(η)
(31) od
(32) die; // the thread dies.

end
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Figure 6: Package structure
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module CoreProtocolService{

struct groupMember{

string memberID;

string IPAddress;

short portNumber;

};

typedef sequence<groupMember> targetDelivery;

typedef sequence<any> deliveredMsg;

interface RMGroup{

void RMCast(in targetDelivery, in any msg);

void RMDeliver(out deliveredMsg);

};

};

Figure 7: CORBA IDL from CPS

and violation detection service via JMS. The evaluation and violation detection
service passes notification of violations of an SLA to interested parties (protocol
layers) via JMS. Figure 7 shows the CORBA IDL for the core protocol service.

Group lifecycle: Two interfaces are provided that provide access to group
lifecycle and message handling services for clients. The CPS interface provides
two methods:

• RMCast Allows clients to issue multicast messages to a particular group
(used by AS).

• RMDeliver Allows delivery of messages to CPS (used by NS).

We chose CORBA RPC for inter-protocol layer communication to enhance the
interoperability of our system and to enable a MeCo to be integrated into our
service in a non-intrusive manner via CORBA interceptors. Interceptors enable
the interception of messages (down calls and up calls) without any change to
application logic. Via the use of interceptors a MeCo may obtain metric meas-
urements related to QoS of a protocol layer. For example, MeCoNS

cps allows the
gathering of metric data relating to the performance exhibited by the NS layer
as viewed by the CPS. We chose JMS for passing messages between the meas-
urement/evaluation services and the protocol layers as such communications
are message oriented and may be consumed as and when appropriate with min-
imal impact on performance and so promote a scalable solution. For example,
there may be many instantiations of different protocol layers requiring similar
message type communications with the measurement service. Rather than re-
quire synchronous RPC on a per-protocol layer basis (a non-scalable solution)
a more appropriate approach would be to enable messages to be passed to the
measurement service via event channels (provided by JMS) that are associated
to particular message types (we assume different instances of protocol layers
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<?xml version="1.0" encoding="UTF-8">

<ExchangeDoc>

<pars>

<eta value="4.60"/>

<rho value="2"/>

<omega value="0"/>

</pars>

</ExchangeDoc>

Figure 8: Example of performance metrics described in XML

would use the same event channels). Figure 4 provides a sample message that
would be passed via JMS relating to the performance metrics. This message
would be exhibited by the CPS and relates to the settings that govern the
behaviour of the RMCast protocol. We now provide a detailed description of
the different monitoring and evaluation present in the system. As our primary
concern is the CPS, we concern ourselves with monitoring that may directly
influence evaluations and violations that may impact the function of the CPS.

Monitoring & Evaluation: The overall performance of the CPS is influenced
by the QoS provided by the NS and the usage made of the CPS by the AS.
Therefore, the following MeCo are required for determining SLA violations in
the system

• MeCoCPS
AS Co-located with AS and responsible for monitoring the QoS

provided to the AS by the CPS. These metrics are based on the intercep-
tion of messages between the AS and the CPS using CORBA interceptors.

• MeCoAS
CPS Co-located with CPS and responsible for monitoring the usage

the AS makes of the CPS. These metrics are based on information supplied
directly from the CPS.

• MeCoNS
CPS Co-located with CPS and responsible for monitoring the QoS

provided to the CPS by the NS. These metrics are based on the intercep-
tion of messages between the CPS and the NS using CORBA interceptors.

• MeCoCPS
NS Co-located with NS and responsible for monitoring the usage

the CPS makes of the NS. These metrics are based on information supplied
directly from the NS.

From our descriptions we may determine two basic types of MeCo a protocol
layer may require: (i) aid in determining if a protocol layer is used inappropri-
ately, (ii) aid in determining the QoS provided to a protocol layer by a lower
protocol layer. As described above, type (ii) uses CORBA interceptors to gain
the relevant metric data. Type (i) requires a protocol layer to exhibit an inter-
face that allows a MeCo to gather information as and when required. Such an
interface is based on XML message exchange. We use SOAP based messages to
transfer this information from a protocol layer to an associated MeCo of type (i).
Periodically a MeCo constructs appropriate summary information based on the
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metric data gathered and prepares a message in the form of XML for passing,
via JMS, to the measurement service. We use XML as the evaluation and viol-
ation service uses XML based language constructs for determining if SLAs have
been violated. The measurement service assumes responsibility for correlating
the QoS data received from a number of MeCo instances into a form appro-
priate for acceptance by the evaluation and violation detection service. This is
required as the tailoring of such information is dependent on the instances of
SLAs that govern QoS between multiple instances of clients and servers (pro-
tocol layers). For example, different instantiations of a protocol layer may exist
on a per client application basis, each with their own SLA. Placing the tail-
oring of QoS information at the MeCo level would require an instantiation of
a MeCo on a per-client basis. However, by having a per-protocol layer type
MeCo gathering QoS information we can construct the appropriate information
in the measurement service. This allows a protocol layer to only require a single
MeCo, irrelevant of the number of clients (higher protocol layers) associated to
it. This is a more scalable solution as the MeCo appears light-weight in the fact
that the unnecessary processing burden related to the many different SLAs a
protocol layer may be participating in is confined to the measurement service.
Protocol layers register their interest to event channels (provided by JMS) on
a per-SLA basis. Violation of an SLA results in the evaluation and violation
detection service issuing an XML message detailing the type of violation that
has occurred on the appropriate SLA event channel. The responsibility of con-
suming such messages is left to the individual protocol layers. This decoupled
communication is ideal in that the evaluation and violation service does not have
to contact directly each protocol layer that is associated to an SLA. Once pro-
tocol layers have consumed messages indicating SLA violation the negotiation
process between protocol layers may be enacted. Such negotiation is protocol
layer dependent and is detailed in previous literature related to CPS, AS and
NS.

4.1 APIs for reliable multicast protocol

Reliable multicast is the bottom-most layer of the architecture, and the al-
gorithm implemented offers a QoS-adaptive reliable multicast service. If you
recall from Section 2 that a single layer relies, for its own execution, on the
lower layer, it’s easy to understand how each layer up in the architecture relies
either directly or indirectly on this layer and then how important this layer is.
Primitives exported by this layer are aimed to multicast messages according
to the protocol’s specifications, and are then RMCast(GroupRef ref, Object

msg) for the sending part and RMDeliver() for the receiving part. Real net-
work communication has been defined, as well as all other general objects, by
means of interfaces, that in the current release have been realized by means
of datagrams sent over UDP DatagramSockets. Characterization of all three
sub-services at this layer, as well as APIs, are explained in detail in the rest of
this section.

4.1.1 Negotiation Sub-service

Negotiation Sub-service’s primary aim is to negotiate a QoS service level with
the user and evaluate parameters for Core Protocol Sub-service’s execution.
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public interface Negotiation {

public boolean negotiate(double successProb, double delay,

String type, GroupRef ref);

}

Figure 9: Negotiation interface

Its structure implements the NegotiationService interface by spanning two
threads, one providing API for the real negotiation, and another to listen to
models updates coming from the QoS Monitoring Sub-service. The first thread,
named Negotiator, is needed for the real negotiation with the user, and simply
calls the Negotiation interface to negotiate QoS based on this layer’s service.
In the reliable multicast layer, this interface’s implementation contains all ana-
lytical approximation formulas needed to evaluate probability of success based
on the user’s requested delay. The Negotiation interface has then the form
shown in Figure 4.1.1:

where succesProb and delay are user’s requested probability of success
and delay respectively, type is the type of delay requested, either absolute or
relative, and ref is a reference to the Group Manager, needed to get any
information about the group.
The second thread, named ModelUpdater, has the aim of taking track of in-
formation coming from the QoS Monitoring Sub-service and eventually update
current probabilistic models for resources upon detection of changes. Such up-
dating is made by means of the UpdateModel interface, that simply calls the
layer-dependent method update. Figure 10 shows the Negotiation Sub-service’s
structure.

4.1.2 Core Protocol Sub-service

The Core Protocol Sub-service realizes the true service offered by this layer, and
at bottom-most layer offers a QoS-adaptive reliable multicast algorithm. Since
a multicast protocol must deal with both sending and receiving a message, two
are the main APIs provided by this sub-service. At sending side, the main prim-
itive RMCast(GroupRef ref, Object msg) allows the caller to reliably send a
message according to the reliable multicast protocol’s specifications described
in Section 3, while receiving side’s main primitive is RMDeliver(), that allows
the caller to reliably deliver a message.

Figure 11 shows Core Protocol Sub-service’s structure. Upon instantiation,
the CoreProtocolservice spans a thread for the sending part of the reliable
multicast protocol (sendThread) and a thread for the receiving part (ReceiveThread)
that, in turn, call the RMCast(GroupRef ref, Object msg) and the RMDeliver()
respectively. The former thread waits for the user to request the sending of a
message, while the latter starts to listen to a port for incoming messages from
other members of the group.
Both primitives for reliable sending and receiving a message are described in
details in the next paragraphs.

Reliable Multicast Operation: The Reliable Multicast operation is imple-
mented by the RMCast(GroupRef ref, Object msg) method. The real mes-
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Figure 10: Negotiation Sub-service structure
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public class Message implements java.io.Serializable{

String originator; // Message’s originator

String broadcaster; // Message’s broadcaster

int copyNo; // Level of redundancy realized

// by this Message

String msg; // Real message to send

long tStamp; // Timestamp for this message

long uniqueProcessId;// Unique ID for this multicast operation

int sequenceNo; // Sequence no. for this message

int rho; // Level of redundancy

double eta; // Gap time for failure independence

}

Figure 12: Format for the Message data type

sage is wrapped into a custom data type named Message. The form for this
data type is shown in Figure 4.1.2

The sequenceNo field has been included in case of fragmentation of the
real message. Level of redundancy realized by the message, copyNo, must be
0 ≤ copyNo ≤ ρ, while the overall level of redundancy, rho, must be ρ ≥ 1. All
other fields are self explanatory.
To send a message according to the reliable multicast protocol, when called,
the RMCast method invokes a generic Multicaster interface that in this con-
text is implemented by a specific UDPMulticaster class. This class is basically
composed out by a buffer where the message to send is deposed, and a pool of
threads that send the message to all other group members. This structure is
shown in Figure 13.

Threads inside the pool are given a shared synchronized list of recipients
to send the message to. A thread that has to send this message, gets a copy
of the message to send and extracts the head from the recipients list. It then
sends the message to the member referred by the element of the recipient list
just extracted, after which it throws the element away and extracts the current
head from the list. This process is repeated until the recipients list is empty,
after which all threads in the pool terminate. The purpose of having a pool
of threads to send a message instead that a single one is that in this way we
can approximate reasonably well a concurrent message sending. According to
the protocol’s specifications, after some time (η in the protocol description), the
process is repeated to send the next copy of the message. The whole process of
sending a message according to the reliable protocol specifications terminates
when the original message has been sent ρ + 1 times.

Reliable Delivery Operation: Reliable Delivery operation’s main primit-
ive is RDeliver(), and the main mechanics strictly follows the pseudo code
described in 3.4. All probabilistic data required for the execution (starting
value of ω, for instance) is obtained from the Negotiation Sub-service. Re-
ception of a message (Figure 14) consists in a Receiver receiving the mes-
sage from the network. Receiver is of course an interface, implemented by
the DatagramReceiver class that opens a DatagramSocket on some port and
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Figure 13: Reliable Multicast operation
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Figure 14: Reliable Delivery of a message

listens for incoming messages. DatagramReceiver puts then the message in a
receive buffer, from which the RMDeliver method pops it and treat it according
to the reliable protocol specifications. At this level, upon reception of a copy of
a multicast operation, all support data structures are updated, and the message
is stored on a so called Message Bag (MsgBag). This structure’s purpose is to
store received messages, that might be useful to have in determinate situations.
It is realized as a linked list of Messages. This list is ordered on the copy a
message refers to (copyNo field of the Message data type) and, in case of equal-
ity on the process broadcasting the message (broadcaster) field, to efficiently
check whether a copy has already been received or not. Since the protocol is
thought as managing more than a multicast operation at a time, MsgBags are
themselves stored in a Message Bag Repository (MsgBagRepository) ordered
on the unique multicast ID. After storing a received message, the process has
to set a timeout by which to expect the next copy of a message. This is done
by means of a custom Time Service, described below.

Time Service: The time service is defined by the TimeService sub-package,
which exports a TimeService interface implemented by the TimeServiceImpl
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public class TimeoutListener extends EventListener{

static long originalTimeout; //timeout to get notification for

static String owner; //owner of the listener

static long clockedTimeout; //timeout converted into the time

//service clock format

static long serviceTstamp; //timestamp assigned by the owner

static int copyNo; // copy the timeout refers to

static long multicastID; // unique ID of the multicast

static int ownerPort; // port of the listener’s owner

}

Figure 15: TimeoutListener object

class. Despite the fact that a time service is typically located on a remote ma-
chine, for our purposes the time service has been thought to be locally collocated
in the same machine hosting the Core Protocol Service (and the whole complete
protocol architecture). The main reason for this choice is that notification of a
timeout expiration is required to be very timely, since there is a QoS require-
ment to respect. What we really needed, therefore, is a separate time service
for each member of the group. Besides the pure timely reasons, local placement
of the time service on the same host hosting the whole sub-service allows us not
to introduce any failure prone link between the Core Protocol Sub-service and
the time service.
In the economy of the protocol, the time service has the sole role of notifying a
process that a timeout is expired. This is done by gathering timeout expiration
notification requests by means of Event Listeners, objects with which a process
notifies the time service about its own interest for a determinate event. In the
scope of the protocol, the only event a process is interested in is timeout expir-
ation, and interest towards notification of a timeout expiration is notified to the
time service by means of a TimeoutListener object, shown in Figure 4.1.2

clockedTimeout is the originalTimeout adjusted to the time service’s own
clock. This is needed in case the owner process’ clock is out of alignment with
the time service’s clock. In this case values of the two fields differ, while in case
the two clocks are perfectly aligned, the value is the same. The serviceTstamp

field contains a timestamp of when the timeoutListener has been sent to the
time service, and is used when calculating the clockedTimeout. All other fields
are self explanatory. The TimeoutListener class provides, besides methods to
set and get values for various fields of the object, a method to notify the owner
of expiration of a timeout.
When a TimeoutListener object is received by the time service, it is inserted by
the main thread in a linked list, listeners, containing all TimeoutListeners
received. Another thread, inside the time service, ”ticks” the time by sleep-
ing for a minimum amount of time and, on wake up, matching the current
time against the clockedTimeout field of each TimeoutListener in the list.
Timeout expiration is triggered by the current time being equal or bigger than
the clockedTimeout field of an element. In this case, the time service noti-
fies the owner by calling the expirationNotification() method that, on the
owner’s side, triggers the recovery thread.
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4.1.3 QoS Monitoring Sub-service

Reliable Multicast layer is the bottom-most layer in the architecture, and at
this level the QoS Monitoring Sub-service is mainly concerned on monitoring
the underlying network reliability and performances.
Network QoS monitoring is one of today’s most challenging task. Heterogeneity
of network’s nature in terms of network traffic and instability due to network
protection technologies such as firewalls make it impossible to determine and
even hard to estimate. All these factors lead to a sever of lack of standards in
measurements.
Use of a multicast monitoring tool could be an approach to such a challenging
task. For this purpose, a few tools for multicast trees monitoring have been
revised. The most promising is the Multicast Quality Monitor (MQM) [22],
that attempt to monitor QoS across a multicast group by using a combination
of pinging to measure RTT (Round Trip Time) between nodes and the RTP
(Real-time Transport Protocol) [21] to measure jitter and packet loss (given by
RTP). Both these techniques do this by using separate measurement nodes on
the group.
An alternative to the use of an external tool could be provided by the IETF
IP Performance Metrics, which tries to develop a standard metrics that can
be applied to the quality, performance, and reliability of Internet data delivery
services.

4.2 External services

External services subpackage provide the protocol with capabilities disjoint from
the ones proper of the protocol but even dough somewhat necessary for correct
execution. In the current release, it contains two main services: the Group
Manager realizes a basic group abstraction, while the Violation Detector mon-
itors the layer’s protocol. It’s important to note that this subpackage contains
services that might or might not be used in the context of the protocol. Both
the services are described in details in the following paragraphs.

Group Manager: The Group Manager realizes a very basic group manage-
ment protocol. Capabilities of this protocol, at the moment, include group
formation, addition of new members and provision of references for group mem-
bers. In this release, to form a group the first member starts an RMI registry
on an remote or local host and regster a RemoteGroupManager service on it
before adding itself as a member of the group. Subsequent members, then, are
passed in initialization phase a couple (hostName, port) that uniquely identi-
fies the machine hosting the RMI registry. Once the group is properly set up and
ready to multicast, the RMI registry plays the important role of providing the
multicast operation with a unique ID and provide group members with every
information about the group itself by giving a GroupRef object upon request.
The ExtServices subpackage exports a GroupManager interface that provides
APIs for the group management protocol. Its structure is shown in Figure 4.2.

This service has been included because protocol execution implies a group
to be formed and ready to multicast, while at the moment it is not currently
working with any group management protocol.
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public interface GroupRef extends java.rmi.Remote {

public localGroup createGroup(String name);

public void addMember(Member newMember);

public int getSize();

public String getName();

public LinkedList getGroup();

public Member getMember(int index);

public int setPort(int port);

public int getPort();

public int getMemberPort(Member member, int type);

public int setMcastParams(int rho, double eta);

public int getRho();

public double getEta();

public long getTimeStamp();

public Member getSender();

public boolean setSender(String newSender, int port);

public long getMcastID();

public LinkedList getReceivers();

}

Figure 16: groupManager’s APIs

Violation detector: The Violation Detector has the possibly important role
of monitoring that a service does not violate some service level eventually spe-
cified in an SLA. Even if at this stage the protocol does not make use of this
external service, it is important to emphasize that this type of monitoring highly
differs from monitoring realized with the QoS Monitoring Sub-service and to un-
derstand why it has been defined as an external service rather than part of the
QoS Monitoring Sub-service. Monitoring obtained by the QoS Monitoring Sub-
service is aimed to validate guarantees given by the Negotiation Sub-service to
the Core Protocol Sub-service. From this definition is easy to understand how
this monitoring is towards the internals of the protocol itself, and how it does
not affect QoS service level defined inside an SLA, that could eventually be
target of eventual violations detected by the Violation Detector. Therefore, this
service can be seen closer to the TAPAS general monitoring service rather than
the protocol’s own one. Again, it is important to note that this service might
even not appear for some layers, since the referring SLA could not include any
clause regarding the use of the service.
The Violation Detector is defined by the ViolationDetector interface, imple-
mented by the ViolationDetectorImpl class. This class is composed by a
thread that basically monitors the Core Protocol Sub-system, doing nothing
when the service provided by the sub-system lies within certain thresholds spe-
cified inside an SLA and taking some action in case the service offered goes
beyond the one specified in the SLA. Since this service requires a concrete in-
tegration with other components of the TAPAS platform, at this stage it is still
not clear what APIs this service should offer.
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Figure 17: Protocol’s failure probability

5 QoS Validation

5.1 Validation of reliability guarantees

We here evaluate the probability that the agreement will not be met. Evaluation
has been made by deriving an expression for failure probability and evaluated it.
Results of evaluation are shown in Figure 5.1, while details on derivation of the
expression can be found in appendix C. In appendix C, we name the probability
of failure as fn. If we name the probability of success A, than probability of
failure fn = (1−A). Figure 5.1 shows the probability of failure for the protocol,
and shows how the protocol is very unlikely to fail. For a group size n = 2,
probability of failure is zero. In this case, in fact, the group is composed by an
originator and a single receiver that can either receive the message, in which
case the protocol is successful, or loose the message, in which case the protocol
does not start according to the definition of reliable multicast. When n > 2,
probability of failure starts to grow and seems to stabilize to a factor of 10−7.

5.2 Validation of latency delay guarantees

The protocol performance has been simulated for a variety of parameter values.
Reliability has been evaluated too, and results are presented here. Each sim-
ulation experiment consists of 100 independent runs of the protocol, using the
same parameter values but different random number streams. The probability
rD is estimated as the fraction of the 100 runs for which all destinations receive
m within time D. Similarly, uS is estimated as the fraction of the 100 runs
for which all remaining operative destinations receive m within time S after its
arrival at a given operative process. The following scenarios were considered:

1. No crashes. All processes remain operative throughout.
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2. Originator crashes. The originator crashes after completing the broadcast
of copy number 0. Due to message losses, some receivers may not receive
m directly from the originator.

3. Originator crashes with a small set of direct receivers. The originator
crashes while broadcasting copy number 0, such that only a small set
of processes directly receive m. The size of that set, called the direct
receivers, is varied.

In all simulations, message transfer times are distributed exponentially with
mean d = 1; the message loss probability is q = 0.05; the group size is n = 50;
the level of certainty is α = 0.99, resulting in η = 4.6.

As well as the performance metrics mentioned already, the simulations count
the total number of broadcasts performed during each run; these counts, denoted
as bcasts, are averaged over the 100 runs. Five groups of experiments were
performed:

In group 1, scenarios 1 and 2 were implemented, with ω = 0 and ρ = 1.
In group 2, scenario 3 holds, again with ω = 0 and ρ = 1; the number of

direct receivers was: 1, 2, and 5.
Groups 3 and 4 are the same as 1 and 2 respectively, except that ρ = 2.
Group 5 is the same as 3, but with dynamically adaptive timeouts.
Figure 17 shows the estimated and observed probability of success, rD, as

a function of D, for group 1. When there is no crash, the approximation is an
under-estimate throughout, because it ignores the possibility that receivers may
time out and become broadcasters; the latter is not unlikely, since ω = 0 (in
fact, an average of more than 4 broadcasts were observed, instead of 2). When
the originator is allowed to crash, the approximation is an over-estimate until
receivers time out (at η + ζ) and become broadcasters. Then it again becomes
an under-estimate.

Figure 18 illustrates the results for group 2, where the originator crashes
while attempting to broadcast copy number 0, and the number of direct receivers
is quite small. The probability of success, uS , is plotted against the relative
delay, S (relative to the first receiver). As expected, the larger the number
of direct receivers, the better the performance. The approximations generally
under-estimate the probability of success, except when S is small and/or the
number of direct receivers is 1. Then the observed under-performance is caused
by the other processes being artificially prevented from receiving directly from
the originator, whereas the approximation allows it.

Figures 19 and 20 represent groups 3 and 4 respectively, with ρ = 2. In
figure 19, the probability of success, rD, is plotted against the absolute latency,
D. The behaviour of the approximations and observations is similar to that in
Figure 17. The increased value of ρ improves the approximated probability of
success considerably.

Figure 20 shows the probability of success, uS , plotted against the relative
delay, S (relative to the first receiver), when the originator crashes while at-
tempting to broadcast copy number 0. Because the few direct receivers now
make 3 broadcasts, uS is closer to 1 for large values of S. The approximation
is again an over-estimate when the number of direct receivers is 1 or 2, for the
reasons mentioned above.

Consider the observed message traffic. When ρ = 1 and the originator
remains operative, ideally there would be 2 broadcasts in total, whereas the
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Figure 18: Group 1: rD as a function of D; ρ = 1, ω = 0
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Figure 19: Group 2: uS as a function of S; different numbers of direct receivers;
ρ = 1, ω = 0
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Figure 20: Group 3: rD as a function of D; ρ = 2, ω = 0
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Figure 21: Group 4: uS as a function of S; different numbers of direct receivers;
ρ = 2, ω = 0

37



10 20 30 40 50
Group size

0

0.05

0.1

0.15

0.2

0.25

R
el

at
iv

e 
E

rr
or

prob. of success = 80%
prob of success = 90%
prob of success = 99%

(a)

10 20 30 40 50
Group size

-0.05

0

0.05

0.1

0.15

0.2

0.25

R
el

at
iv

e 
E

rr
or

prob. of success = 80%
prob of success = 90%
prob of success = 99%

(b)

10 20 30 40 50
Group size

0

0.05

0.1

0.15

0.2

0.25

R
el

at
iv

e 
E

rr
or

prob. of success = 80%
prob of success = 90%
prob of success = 99%

(c)

10 20 30 40 50
Group size

0

0.05

0.1

0.15

0.2

0.25

R
el

at
iv

e 
E

rr
or

prob. of success = 80%
prob of success = 90%
prob of success = 99%

(d)

Figure 22: Relative error on simulation: on relative latency delay ((a) and (b)),
and on absolute delay latency ((c) and (d)).

observed average is 4.53; when the originator crashes after making 1 broadcast,
the ideal figure is 3 and the observed one is 5.37 (Figure 18). Similar ratios
of ideal/observed number of broadcasts hold when ρ = 2 (Figure 20). Thus,
the price paid for high reliability without dynamic adaptation is a 2 to 3-fold
increase in message traffic compared to the unattainable ideal.

A further proof of how the approximations underestimate simulations is
given by Figure 22. This figure shows the relative error of the approximation
with respect to the simulation varying the group size. In the graphs, relative
error is shown for different group sizes. In each graph we fix three success
probabilities (e.g. 80%, 90% and 99%). For each of these, we take the time at
which the approximation calculations reach such probability. We then see what
probability of success we are able to reach in reality (i.e. in the simulation)
and make it relative. These graphs basically show how probability of success
guaranteed by means of approximation differs from probability of success truly
reached in simulation over different group sizes. Positive errors here mean that
approximation is really underestimating simulation, while negative errors mean
that approximation is overestimating simulation.

Figures (a) and (b) show relative error on absolute latency delay and relative
latency delay respectively. Here simulations have been conducted with the same
set of parameters as Group 3 at the beginning of this section. Figures (c) and
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Size non-adaptive adaptive reduction
5 3.97 3.92 1.25%
15 4.73 4.43 6.34%
25 5.03 4.47 11.13%
40 6.90 5.65 18.11%
50 8.48 6.78 20.04%

Figure 23: Reduction of total number of broadcasts due to dynamic adaptation
of timeout in simulation, no crashes scenario.

Size non-adaptive adaptive reduction
5 4.21 4.06 3.56%
15 5.19 4.77 8.09%
25 6.77 5.78 14.62%
40 8.21 6.64 19.12%
50 10.02 7.91 21.05%

Figure 24: Reduction of total number of broadcasts due to dynamic adaptation
of timeout, originator crash scenario.

(d), showing again relative error on absolute latency and relative latency delays
respectively, are obtained by simulations where probability of packet loss q has
been increased to 7.5%. These graphs clearly show that, despite the group size,
the service achieved in reality is constantly better than the one we guarantee to
the user, with peaks of 20%.

The effect of dynamically adaptive timeouts was also simulated. The results
are shown in Figure 23 (in the no crashes scenario) and Figure 24 (in the ori-
ginator crash scenario). What changes is the total number of broadcasts during
the execution of the protocol. A reduction of 15% – 20% in the total number of
broadcasts was observed.

6 Current Status and Integration Plan

6.1 Current status

As stated earlier, RMCast has been implemented in Java as a CORBA ser-
vice. CORBA provides a software infrastructure allowing services to support
applications that may be implemented in a number of different languages to be
deployed in a heterogeneous environment. This relieves application developers
from having to write their applications in a specific language targeted for spe-
cific platforms to use RMCast. We assume RMCast to be used by a variety of
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application types beyond our requirements in the TAPAS project. For example,
RMCast will benefit message dissemination schemes for real-time multimedia
technologies in the support of applications such as online games, traditionally
written in C or C++, where timeliness and reliability of message delivery play
an important role in satisfying end user requirements. RMCast is currently a
standalone service that is deployed on a per-node basis, with access provided
to processes co-located on the same node via an Interface Definition Language
(IDL) interface. IDL supports the description of services based on the object-
oriented paradigm without the need to specify the target implementation lan-
guage (separating interface from implementation). Section 4 contains the details
of the APIs. In order to describe how the multicast service is used by developers,
we now provide a brief explanation of the functionality provided via the IDL
interfaces associated to RMCast (see Figure 25).
RMGroupFactory provides developers with the ability to instantiate multiple in-
stances of the RMGroup interface. We assume that a developer would instantiate
an RMGroup interface on a per-group basis and so provide access to a group on
a per-node basis. Via RMGroupFactory a developer specifies the name of the
group (useful for higher level services such as group management but not neces-
sary for RMCast) and the port on which to expect incoming messages from the
group. Once created, the RMCast method of RMGroup may be called to send a
message. A message is in the form of a CORBA any data type. The any data
type serves as a container for any data that can be described in IDL or for any
IDL primitive type. This provides a flexible way of representing information
whose type is unknown at compile time (expected in such a generic service).
Together with the message, a list of target recipients is provided (associated to
the membership of the group the multicast is sent to). This list may be derived
from higher level services such as group membership for dynamic groups (mem-
bership changes throughout the lifetime of the group) or from a naming service
when group membership is static (does not change throughout the lifetime of
the group).

6.2 Integration Plan

Although RMCast has been implemented as a standalone service, within the
context of the TAPAS project, we plan to integrate it within the JBOSS ap-
plication server (the server chosen for the TAPAS QoS enabled application
server platform). The JBOSS application server makes use of JavaGroups
(JGroups) group communication system. We describe how RMCast can be used
by JGroups, and the advantages of such an integration. This integration work
will be completed by September 2004, to be ready as a part of demonstration
of TAPAS platform.

6.2.1 JGroups in JBOSS

JBOSS provides clustering of application services to support load balancing and
fail over. Clustering allows any one of a number of application servers to satisfy
a client request and so may be described as scalable in the sense that increased
numbers of client requests may be satisfied by providing additional resources
in the form of the addition of application servers to a cluster. A load balancer
assumes responsibility for attempting to distribute processing and communica-
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module CoreProtocolService{

struct groupMember{

string memberID;

string IPAddress;

short portNumber;

};

typedef sequence<groupMember> targetDelivery;

typedef sequence<any> deliveredMsg;

interface RMGroup{

void RMCast(in targetDelivery, in any msg);

void RMDeliver(out deliveredMsg msg);

};

interface RMgroupFactory{

}

Figure 25: IDL representing RMCast CORBA Service

tions activity across a cluster so that no single application server is overwhelmed.
In JBOSS, a load balancer attempts to balance the load via a predetermined
(e.g., round robin) approach to client request distribution amongst application
servers in a cluster. An additional benefit of clustering is the ability to satisfy
client requests given limited application server failures: client requests may be
redirected to only correctly functioning application servers and away from ap-
plication servers that are suspected to have failed. A group communications
service is an important sub-system in clustering: providing cluster membership
management (application servers joining and leaving a cluster) and informing
the load balancer of such changes. This requires consensus protocols to realise
the membership of a cluster that incorporate failure suspicion mechanisms to
realise when application servers may have failed. JavaGroups (JGroups) cur-
rently supports these services for JBOSS clustering.
JGroups is a toolkit for constructing and managing protocols that provide mul-
ticast services for use in Java applications. JGroups provides an API that
incorporates the notion of a channel for enabling group participants (geograph-
ically separated processes) to disseminate messages to all other members of a
multicast group. A user creates a channel and then calls a connect method
together with a parameter identifying the name of the group the user wishes to
join. A number of properties associated to a channel are specified by the user
at channel creation time. These properties relate to the delivery properties of
messages and group membership functions. Properties are specified in a manner
that reflects a protocol stack: protocols governing unreliable message dissem-
ination located near the base of the stack and higher level functions associated
to ordering and group management located near the top of the stack. For the
purposes of clustering in JBOSS, a channel needs to be setup that provides a
comprehensive protocol stack. Such a stack contains 11 layers, including UDP
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at the lowest layer for accessing networking protocols with FD (failure suspi-
cion) and GMS (group membership) at higher levels. Other layers, although not
mentioned here, are integral to the success of the group communication services
used by JBOSS but are not included here for clarity (the understanding required
to identify an appropriate stack is not necessary for the purpose of describing
an overall view of how JGroups is used in JBOSS).
The HighAvailable Partition (HAPartition) is responsible for supporting access
to basic clustering information (e.g., cluster name, cluster membership) and
allows state transfer and RPC primitives to be enacted by higher clustering
related services. The HAPartition uses JGroups for enabling group communic-
ations in the support of such services and exhibits its interface via the MBean
mechanism associated with the JMX approach to the modular system devel-
opment associated with JBOSS. Although HAPartitioning uses JGroups, the
clustering documentation associated to JBOSS insists that “the JBoss cluster-
ing framework has been abstracted in such a way that it should be possible to
plug-in different communication frameworks”.

6.2.2 Integration of RMCast into JBOSS

Given that HAPartitioning may use other types of group communication sub-
systems, it should be possible to replace JGroups with our QoS enabled group
communications service. As JGroups and JBOSS are open source projects, the
tailoring of existing JBOSS and JGroups code allows the integration of our
software incrementally. Our approach is to replace protocols from the lower
JGroup protocol stack first, followed by the higher level JGroup protocol layers.
In the first instance, the RMCast protocol we have implemented replaces the
lower part of the JGroups protocol stack, and so provides JGroups with QoS
enabled reliable multicast. This approach would require minor modification to
the JGroups source code and allow the HAPartitioning software to remain un-
modified (as it is still gaining group communications services via the JGroups
channels API). A process of replacing JGroup layers may then be achieved sys-
tematically with QoS enabled protocol layers built by ourselves. Approaching
integration in such a manner will allow the existing services of JGroups to be
available (e.g., failure suspicion, ordering) and so provide JBOSS with a fully
functioning group communication sub-system at all stages of development.
Figure 26 identifies the initial integration of QoS enabled group communications
into JBOSS. The lower UDP protocol layer (shown in grey) is modified in such
a way that the code associated to socket access is rewritten to access an RM-
Group object. To ensure the availability of an RMGroup object the JGroups
code associated to stack creation is altered. This required the instantiation of
the altered UDP protocol layer to also create an instantiation of an RMGroup
object via the RMGroupFactory. The RMCast CORBA service is installed on
a per node basis and is accessed locally via standard CORBA RMI calls by the
UDP layer. As mentioned previously, this phase of integration is transparent to
HAPartitioning. All data that the UDP layer would usually send via sockets is
now transported via our RMCast objects.

A benefit associated with our initial integration of RMCast into JGroups
is the ability to satisfy the requirements of WAN cluster deployment (nodes
are not co-located on the same LAN but are located on geographically separ-
ated nodes) in the absence of IP-Multicast. ISPs are under no obligation to
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Figure 26: Initial integration of QoS enabled group communications service

support IP-Multicast. Therefore, JGroups provides lower stack layers that ac-
cess TCP for WAN deployment in the absence of IP-Multicast. Maintaining
TCP connections is a heavyweight approach to communications compared to
UDP, although TCP does provide a higher degree of reliability (best effort) and
FIFO message ordering over that provided by UDP. Unfortunately, the reliab-
ility and ordering of TCP is based on point-to-point messaging and requires
JGroups to still instantiate a stack equivalent to when UDP is used as order-
ing and reliability of one-to-many communications is required. The ability to
attain the QoS provided by RMCast means that our altered UDP layer may be
used without resorting to TCP connections for WAN deployments that do not
support IP-Multicast. Our approach requires less networking and processing
resources compared to TCP. The integration phase will provide an appropriate
testing platform for determining QoS parameters associated to different layers
of the protocol stack and how negotiation between layers relating to QoS vi-
olations may alter such parameters. QoS parameters that relate to timeliness
and reliability at the RMCast protocol layer (e.g., 90% of messages delivered
within 50ms) will make it possible to provide higher layers with QoS. Failure
suspicion is one such layer that will benefit from RMCast and provide adaptive
QoS. In existing systems, once a failure is suspected an agreement protocol is
initiated (by a member that suspects another member via some timeout). Such
a protocol requires a subset of group members to agree on group membership,
once agreement has been reached then application level processing of messages
may continue. A problem in failure suspicion services is determining the appro-
priate timeout before a group members suspects another member of failing and
initiating the agreement protocol: too short a timeout will result in unnecessary
agreement protocol initialisations that have the effect of preventing application
level processing from occurring whereas too long a timeout will result in failed
members not being removed from the group (in the case of clustering this would
have the effect of prolonging the issuing of client requests to what is actually a
failed server). At the moment judging such timeouts is left to developers and
such timeouts are static during runtime, not being capable to adapt to changes
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in the environment (e.g., congestion of network). However, with RMCast such
timeouts may be judged more appropriately and be adaptable at runtime given
the negotiation capabilities of our QoS enabled architecture.

Conclusions

The protocol presented in this document offers a QoS-adaptive reliable multic-
ast service that guarantees delivery of a message to all operative destinations
despite sender or receiver crashes and message losses. The protocol also aims
to eliminate unnecessary simultaneous broadcasts by multiple processes. The
simulations confirm that the number of such broadcasts is not large. The ex-
pressions used in the QoS negotiations have deliberately been designed to be
conservative and act as under-estimates. It has been shown by experimentation
that they do indeed under-estimate the performance of the protocol, except in
extreme cases which are very unlikely to occur in practice.
The basic (unordered) reliable multicast protocol has been implemented, as
well as the negotiation mechanism needed to fulfill QoS requirements. APIs de-
veloped are general enough to easily be integrated inside any application server
and to be run under any platform by means of the use of technologies such
as CORBA, but leaves the possibility of the service be run as a stand alone
application.. Ongoing work on implemented APIs include a real testing of the
protocol, in order to have figures to be evaluated, and in depth study of efficient
techniques for network-level QoS monitoring.
Future work will include development of protocols for more complete, sophistic-
ated services such as FIFO and uniform ordering and integration of the service
in the JBoss application server where it can be used for cluster management
(e.g., for loadbalancing).
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A Comparison of Models

The features of the probabilistic model are reiterated below, assuming a global
clock (which is not accessible to processes).

• Processing Delays : Within a correct node, any task that is scheduled to be
executed at time t, will be executed at t + π where π is a random variable
with some known distribution.

• Storage Delays : When a correct process initiates a storage request (for
storing or retrieving of data) at time t, the request will be correctly pro-
cessed at t+λ, where λ is a random variable with some known distribution.

• Transmission Delays: If a correct process i sends a message m to another
correct process j at time t, then

– m is delivered to j (i.e., m arrives at the buffer of j) with some
probability 1− q (m may be lost in transmission with probability q).

– if m is not lost, it is delivered at t + δ where δ is a random variable
with some known distribution.

If the distributions of π, λ, and δ are uniform with some known mean and q = 0,
then the probabilistic model refers to the well-known synchronous model which
permits upper bounds on π, λ, and δ to be determined with certainty; a violation
of this bound is to be regarded as a failure of either the sending node or the
receiving node. Thus, the synchronous model is a special case of the probabilistic
model. This means that any probabilistic protocol designed for any given delay
distribution and for a non-zero q should run correctly in a synchronous system
when the delay distribution is uniform and q = 0. Conversely, if a problem is
unsolvable in a synchronous system, then it cannot be solved in the probabilistic
model. The asynchronous model considers the bounds on the delays π, λ, and δ

to be finite; neither the bounds nor the delay distributions can be known with
certainty. For example, any bound on delays, however judiciously deduced,
is vulnerable to being violated with unknown probabilities. The probabilistic
model, on the other hand, assigns probabilities or coverage to quantification of
delay bounds.

The probabilistic model also differs in two ways from the two deterministic
models over the treatment of message/packet loss. First, the losses are con-
sidered to be independent, though in reality they are likely to be correlated.
This is abstracted for two reasons: it leads to a tractable performance analysis
and the loss probability guaranteed by commercial ISPs is usually very small
(about 1%).
Suppose that process i sends message m to process j a finite number of times,
say k times. There is a small probability (qk) that m is not delivered to j,
whereas in the synchronous and the asynchronous models, the probability of
a transmission failure with k, k > 1, attempts is assumed to be nil for some
finite k. This assumption is often referred to as the bounded degree omission
failures, and implies an underlying assumption that the losses are transient in
nature and do not affect a flow between a given pair of processes permanently.
The bound k is regarded to be known and unknown in the synchronous and
asynchronous models respectively. Furthermore, in these deterministic models,
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Figure 27: Comparison of models

it is usual to abstract the redundant transmissions necessary to mask losses
within the send operation3 and to denote the over-all end-to-end transmission
delay as δ. The send operation in the probabilistic model however refers to a
single, non-redundant transmission. Thus, if qk in the probabilistic model is
taken to be zero for some k and the delay distributions be unknown and with
finite support4, then the probabilistic model becomes the asynchronous model.
Figure 25 summarizes these observations on k and δ.
The timed asynchronous (TA) model [11] assumes a fail-aware service on top
of an asynchronous CS. This service discards messages delivered by the asyn-
chronous CS, if the messages are delayed by more than a threshold which is a
fail-aware service parameter. Consequently, the CS of the TA model becomes
much similar to that of the synchronous model (see Figure 25) except for a
non-zero loss probability that can be much higher than q of the probabilistic
model due to the filtering by the fail-aware service.

3Otherwise, correct processes cannot reliably send messages to each other, which is disal-
lowed in both the deterministic models.

4A non-negative random variable ξ has a finite support distribution if P(ξ ≤ x) = 1 for
some finite x.
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B Analytical approximations for latency delays

estimation

The probability, rD, that all operative destinations receive at least one copy of
a multicast message within a given interval of time, D, can be approximated
by assuming that the originating process does not crash. This is a reasonable
approximation because in practice processes crash rarely. Moreover, it will
generally be a pessimistic approximation, since if the originator crashes at some
point after broadcast 0 but before broadcast ρ, some of the processes that receive
the last broadcast copy will make at least one broadcast themselves. Thus, the
number of senders and hence the probability of success will increase. Of course
it is possible that the originator crashes during broadcast 0, and no operative
process receives any message; we consider the probability of that event to be
negligible.

Let ξ be the random variable representing the execution time of a send(m)
operation, i.e., the transmission time of a message from a given source to a given
destination. The probability, h(x), that such an operation does not succeed
within time x, is equal to

h(x) = q + (1− q)P(ξ > x) , (1)

where q is the probability that the message is lost. By definition, h(x) = 1 if
x ≤ 0. In the case of exponentially distributed transmission times (with mean
d), the above expression becomes

h(x) = q + (1− q)e−x/d , (2)

and h(x) = 1 for x ≤ 0. Since the originator makes its kth broadcast at
time kη (k = 0, 1, . . . , ρ), the probability, gD, that a given destination does not
receive any of the ρ + 1 copies within time D, is given by

gD =

ρ
∏

k=0

h(D − kη) . (3)

Hence, the probability, rD, that every destination receives at least one copy
of the message within an interval of length D is equal to

rD = (1 − gD)n−1 . (4)

If some of the destinations have crashed, then (4) is an underestimate of the
probability that all operative destinations receive at least one copy within time
D. This is so because the term (1− gD) would then be raised to a lower power,
which would make the resulting probability larger.

A user requirement, stated in terms of a success probability R and latency
D, is achievable if the probability evaluated by (4) satisfies rD ≥ R; otherwise
it is not achievable.

B.1 Relative latency

Suppose now that at a given moment, t, a given process, pi (different from the
originator), receives copy number k of the message. Of interest is the probability,
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uk(S), that all other processes will receive at least one copy of the message with
relative latency S, i.e., before time t + S.

The implication of pi receiving copy number k is that the originator has
started broadcasting no later than at time t− kη in the past, and has issued at
least k broadcasts. Consider a given process, pj , different from the originator
and from pi. The probability, gk(S), that pj will not receive any of those k

copies before time t + S is no greater than

gk(S) =
k∏

m=0

h(S + mη) , (5)

where h(x) is given by (1). In addition, if k < ρ, pj may receive copies
k, k + 1, . . . , ρ from pi, in the event of the originator crashing. Those latter
broadcasts would be issued at times t + η + ω + ζ, t + 2η + ω + ζ, . . ., t + (ρ−
k + 1)η + ω + ζ, assuming that no other process starts broadcasting. Since ζ

is uniformly distributed on (0, η), we can pessimistically replace ζ by η. The
probability, g̃k(S), that pj will not receive any of the messages from pi before
time t + S is thus approximated by

g̃k(S) =

ρ−k+1
∏

m=1

h(S − (m + 1)η − ω) , (6)

where g̃ρ(S) = 1 by definition; also, h(x) = 1 if x ≤ 0. Thus, a pessimistic
estimate for the conditional probability, uk(S), that all other processes will
receive at least one copy of the message with relative latency S, given that a
given process has received copy number k, is given by

uk(S) = [1− gk(S)g̃k(S)]n−2 . (7)

A pessimistic estimate for the conditional probability, uS, that all other
processes will receive at least one copy of the message with relative latency
S, given that a given process has received any copy, is obtained by taking the
smallest of the above probabilities:

uS = min[u0(S), u1(S), . . . , uρ(S)] . (8)

This quantity may be used in deciding whether a user requirement, stated in
terms of a success probability U and relative latency S, is achievable or not: the
requirement is achievable if uS ≥ U . Intuitively, one would expect the minimum
in the right-hand side of (8) to occur for k = 0, so that uS = u0(S). Indeed,
this has been the case in all examples evaluated.

Adaptive timeouts. Suppose that a user requirement stated in terms of U

and S is achievable for some chosen ω and a given η. There may be scope for
a dynamic adjustment of the parameter ω so as to minimize the message traffic
rate. For example, suppose that the given process receives copy number k and,
evaluating gk(S) according to (5), finds that

[1− gk(S)]n−2 > U . (9)
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That means that the user requirement can be achieved even if this process
decides not to broadcast at all, i.e., sets its timeout parameter to ω =∞ (that
would result in g̃k(S) = 1). On the other hand, if (9) is not satisfied, then

[1− gk(S)g̃k(S)]n−2 > U (10)

must hold for the chosen ω because the user requirement was found achiev-
able considering the smallest of u0(S), u1(S), . . ., uρ(S) in (8). Therefore the
process may be able to set its ω to a larger value than the initially chosen one,
while still satisfying the user requirement.

B.2 Heuristic adaptive timeouts

When a process first receives m with copy number k, ω can be set to ∞ if
the expression (9) holds. If that expression does not hold but the requirement
uS ≥ U is achievable, then the best choice for ω is the largest feasible one:

max{ω | uk(S) ≥ U} . (11)

However, that computation can be non-trivial. Moreover, a new value of ω

needs to be computed whenever a new timeout is set for the same k, and for a
value of S reduced by the time elapsed since receiving the first copy. Similarly,
when the process receives the next copy, the value of S used in (11) should be
the original target S reduced by the time elapsed since the m was first received.
To avoid these complexities, we adopt a heuristic approach that simplifies the
computation of adaptive timeouts.

Suppose that a receiver pi receives m for the first time with m.copy = k.
If k > 0, pi increases ω by kη. This is based on the assumption that the

worst case assurance given for a given requirement {U, S} relies only on copy
number 0 having been received; but the receiver now knows that k additional
broadcasts have already taken place.

If k = 0 and the receiver pi receives copy 1 before the timeout η +ω expires,
then ω is increased by η. The rationale for thus delaying the broadcast is to take
advantage of other processes which time out on copy 1 and become broadcasters
themselves.
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C Analytical evaluations for reliability estima-

tion

To calculate the probability of failure, two failure probabilities must be con-
sidered. One capturing the possibility that a single process fails before timeout
expiration triggers that process to start transmitting, and another to capture
the possibility for the originator to fail in the middle of each broadcast opera-
tion. Let’s name then v the probability that a process fails before the timeout
needed to start transmitting. If we assume this variable to follow an exponential
distribution, then:

v = 1− e−τγ (12)

where τ is the timeout itself and 1

γ is the mean time transmission failure

(mttf). Let’s also name β the probability that the originator fails inside each
broadcast, after sending to k receivers. 5

The scenario here is the one in which the originator starts to broadcast a message
and crashes inside that broadcast operation after sending the message to k

receivers. Since a message can be lost by the communication subsystem with
probability q > 0, it is not sure that all k receivers will receive the message. It
is reasonable, then, to assume that j receivers out of k will receive the message.
These now can either fail altogether, causing the protocol to immediately fail,
or at most j−1 of them fail and the jth becomes the new leader and starts over
the communication process with a system of n − j processes, being subject to
the same failure probabilities as at the beginning. The mathematical formula
to describe this probability of failure is then, if we name fn the probability that
the protocol fails on a system with n processes:

fn =

n−1∑

k=1

(

(1−β)k−1β

k∑

j=1

((
k

j

)

(1− q)jqk−j(vj + jvj−1(1− v)fn−j)

))

(13)

This formula is basic a composition of all possible probabilities that lead to
protocol to fail, and needs an explanation:

fn =

n−1∑

k=1

(

(1 − β)k−1β
︸ ︷︷ ︸

a

k∑

j=1

((
k

j

)

(1− q)jqk−j

︸ ︷︷ ︸

b

( vj
︸︷︷︸

c

+ jvj−1(1 − v)
︸ ︷︷ ︸

d

fn−j
︸︷︷︸

e

)

))

As said before, in this scenario the sender crashes in the middle of a broad-
cast, sending the message to k receivers out of n− 1. This is captured by (a) in
the expression, and the outer sum captures the fact that k can vary from 1 to
n − 1. Of these k receivers, only j receive the message, since there is a packet
loss probability q > 0. (b) in the expression captures all possible combinations
of choosing j receivers out of k, with j successful receptions and k − j failing
ones. Again, the outer sum captures the fact that truly receiving processes can
go up to k. Once the message is received by j processes, each of these can either

5The broadcast operation is realized by sending the message to n− 1 receivers, where n is
the group size and is such that n ≥ 2.
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all crash before timeout’s expiration or j−1 can crash leaving only one survivor
process, that will go on with the multicast operation on a system with n − j

processes. Again, same assumptions about failing apply for this new system,
and (e) captures the failing probabilities on a system with n− j processes.
This formula slightly overestimates probability of failure, since considers only
one process surviving to eventual crash in (d) and (e). Of course, more than one
process could survive the crash in (d), and to capture this we should substitute
(d) with the following:

(c) +

j−1
∑

m=1

(
j

m

)

(1− v)mvj−m

︸ ︷︷ ︸

d

(fn−j+m)m

︸ ︷︷ ︸

e

This new bit shows the possibility that more than one processes survive the
probability to fail before the timeout (i.e. v) by including allowing m processes
(1 ≤ m ≤ j − 1) rather than one, and this captured by the initial sum. Internal
binomial describes then all ways in which we can choose m processes out of j,
of which m succeeding and j−m failing. After this, we will have a system with
n − j + m processes with m processes firstly transmitting (senior run), so the
probability of failure fn−j+m is powered to m.
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