
QoS-aware Clustering of Application Servers∗

Giorgia Lodi, Fabio Panzieri
Dipartimento di Scienze dell’Informazione, Università di Bologna

Via Mura Anteo Zamboni 7, I-40127 Bologna (Italy)
email: lodig@cs.unibo.it, panzieri@cs.unibo.it

Abstract

In this extended abstract, we introduce a set of mid-
dleware services we are designing in order to enable
clustered application servers to meet Quality of Service
(QoS) application requirements. In addition, we sum-
marize an implementation of these services we are cur-
rently carrying out as an extension of the JBoss appli-
cation server, and discuss open issues concerning ap-
plication deployment in clustered application servers.

1 Introduction

Current J2EE[16] -based application server tech-
nologies (e.g., JBoss [8], JOnAS [10], WebLogic
[3], WebSphere [7]) support clustering of applica-
tion server instances in order to host distributed,
component-based applications. These technologies
implement clustering solutions for scalability, load bal-
ancing, and fault tolerance purposes; however, they
can meet only partially QoS requirements, such as
availability, timeliness, security, and trust, of the ap-
plications they host as they are not fully instrumented
for meeting those requirements (i.e., they are not de-
signed to be QoS-aware, see below).

It is common industry practice to specify the QoS
application requirements within a legally binding con-
tract, termed Service Level Agreement (SLA), that
includes both the specification of the QoS guarantees
an application hosting environment has to provide its
hosted applications with, and the metrics to assess the
QoS delivered by that environment. The definition of
SLAs is a complex task, and is outside the scope of
this extended abstract (the interested reader can refer
to [2, 18, 15]). For the purposes of our current discus-
sion, we term QoS-aware application hosting environ-
ment a hosting environment designed to honour the
so-called hosting SLAs; i.e., the SLAs that bind that
environment to the applications it hosts.

∗This research has been partly funded by the EU project
TAPAS (IST-2001-34069) and the FIRB project entitled “Web-
Minds” of the Italian Ministry of Education, University and
Research.

In order to construct one such an environment,
the above mentioned SLAs are to be enforced, and
monitored at run-time. Thus, we propose that SLA
enforcement and monitoring be carried out by two
principal middleware services, namely a Configuration
Service (CS) and a Monitoring Service (MS), which
can be incorporated in the current application server
technology.

In addition, as an application hosting environment
can be constructed out of a number of clustered ap-
plication server instances, the CS and MS mentioned
above are to be designed so as to exercise control over
both the internal configuration of each server instance
in that hosting environment, and the configuration of
the cluster of server instances that form that envi-
ronment (hence, in the following, we use the phrase
QoS-aware clustering to refer to a QoS-aware hosting
environment constructed out of clustered application
servers).

In this extended abstract we introduce the afore-
mentioned CS and MS, discuss their design in the con-
text of application server clustering, and summarize
their implementation. Typically, in this context, load
balancing and fail-over mechanisms are essential in or-
der to guarantee an effective clustering service. These
mechanisms can be used by the CS and MS in order
to govern the clustered resources and meet the host-
ing SLA. We are currently investigating the design of
these mechanisms, and will not discuss them in this
extended abstract.

Indeed, a number of research groups have investi-
gated issues of resource clustering, and QoS enforce-
ment and monitoring, both in the context of Web ser-
vices, and application server technologies. Relevant
results in this area, in addition to those already men-
tioned, include [14, 20, 17, 1, 6, 12, 5, 21]. For the
sake of conciseness, we cannot compare and contrast
our approach to QoS-aware clustering with those dis-
cussed in the cited references; however, we wish to
mention that, to the best of our knowledge, none of the
approaches proposed in the literature is based on aug-



menting existing application server technology with
middleware services for SLA enforcement and run-
time monitoring, as in our approach.

This extended abstract is structured as follows. In
Section 2 we describe the design and implementation
of our CS and MS. In Section 3 we discuss open is-
sues concerning application deployment in clustered
application servers. Finally, in Section 4, we intro-
duce some concluding remarks.

2 Design and Implementation
The principal issues in the design of the CS and the

MS can be summarized as follows. In general, the CS
is responsible for configuring an application hosting
environment (be this a single application server, or a
cluster of servers) so that it meets effectively the SLAs
that bind that environment to the hosted applications.
To this end, the CS takes in input an application host-
ing SLA, and discovers the available system resources
that can honour it. Provided that the discovered re-
sources be sufficient to meet the input SLA, the CS
reserves these resources and sets up the QoS-aware
application hosting environment.

The MS is responsible for monitoring that hosting
environment at application run time, so as to detect
possible violations of the SLA. In order to prevent
those violations, the MS is to be designed so that it
takes appropriate actions if it discovers that an SLA
violation is about to occur. Thus, for example, the
MS can make use of a predefined overload warning
threshold in order to detect dangerous load conditions
that may lead to server overloading. In one such case,
the MS can invoke the CS, and require that the ap-
plication hosting environment be reconfigured appro-
priately, so that it adapts to the new load conditions,
and continues to honour the application SLA.

Note that, in practice, the MS will have to make use
of a number of warning thresholds (e.g., a throughput
threshold, a response time threshold), which may con-
tribute to define one such threshold as that mentioned
above, for QoS monitoring purposes. These thresholds
can typically be determined either by means of appli-
cation benchmarking carried out prior to application
deployment, for example, or by means of techniques
based on the modeling and simulation of the hosting
environment. In our Department, work is in progress
on the design of some such techniques. However, this
work is outside the scope of this extended abstract;
hence, in the following, we will not discuss it further.

As the CS and the MS are responsible for config-
uring and monitoring both a single application server
and a cluster of servers, they can be thought of as oper-
ating at two distinct levels of abstraction, that we term

the micro-resource and the macro-resource levels, re-
spectively. The former level consists of resources, such
as server queues, and thread and connection pools, in-
ternal to each individual application server; the latter
level consists of such resources as the group of clus-
tered application servers, and their IP addresses.

Thus, for example, the CS at the micro-resource
level is responsible for sizing appropriately an appli-
cation server request queue, in order to enable that
server to deal with an (anticipated) maximum number
of concurrent requests, and to maintain its responsive-
ness. In contrast, in order to meet possible load bal-
ancing and responsiveness requirements, the CS at the
macro-resource level may have to modify the cluster
configuration at application run time, e.g., by enabling
one (or more) new application server instance(s), or by
replacing a crashed application server instance with an
operational one.

The MS at the micro-resource level monitors the
QoS (e.g., throughput, response time) delivered by
the single application server, and requires the server
reconfiguration when the delivered QoS reaches some
predefined warning thresholds. At the macro-resource
level, instead, the MS monitors the QoS delivered by
the clustered application servers, and requires clus-
ter reconfiguration in case the cluster delivered QoS
reaches a predefined warning threshold.

The implementation of the CS and the MS at the
Macro-resource Level, only, is discussed below.

2.1 Implementation

Our CS and MS services are being implemented as
an extension of the JBoss application server. JBoss
consists of a collection of middleware services for
communication, persistence, transactions and secu-
rity. These services interoperate by means of a mi-
crokernel termed Java Management eXtension (JMX)
[19]. Specifically, JMX provides Java developers with
a common software bus that allows them to integrate
components such as modules, containers and plug-ins.
These components are declared as Managed Beans
(MBeans) services, which can be loaded into JBoss,
and can be administered by the JMX software bus.
The MBeans are the implementation of all the man-
ageable resources in the JBoss server; they are repre-
sented by Java objects that expose interfaces consist-
ing of methods to be used for invoking the MBeans.

A number of JBoss applications servers can be clus-
tered in a network. A JBoss cluster consists of a set
of nodes. A node, in JBoss, is a JBoss application
server instance. There can be different clusters on the
same network; each cluster is identified by an individ-
ual name. A node may belong to one or more clusters



(i.e., clusters may overlap).

A JBoss cluster can be used for either homogeneous
or heterogeneous application deployment. Homoge-
neous deployment entails that each node in the clus-
ter runs identical services, and Enterprise Java Beans
(EJBs); in contrast, heterogeneous deployment entails
that each node in the cluster may run a different set of
services and EJBs. It is worth observing that, in prac-
tice, this latter form of clustering is not recommended
[11]; hence, for the purposes of our current discus-
sion, in the following we shall assume homogeneous
deployment, only (issues of heterogeneous deployment
are discussed further in Section 3). The JBoss Clus-
tering service [13] is based on a framework consisting
of a number of hierarchically structured services, and
incorporating a reliable group communication mecha-
nism, at its lowest level (currently implemented using
JGroups [9]. The reliability properties of the JGroups
protocols include lossless message transmission, mes-
sage ordering, and atomicity).

The JBoss Clustering service implements load bal-
ancing of RMIs, and failover of crashed nodes (i.e.,
when a clustered JBoss node crashes, all the affected
client calls are automatically redirected to another
node in the cluster); these mechanisms are imple-
mented inside the client stub.

Currently, client Java programs using the JBoss
3.2.x can choose among four load balancing policies
(namely, Random Robin, Round Robin, First Avail-
able, and First Available Identical All Proxies). These
policies implement non-adaptive load balancing within
the cluster, at the RMI level. Hence, at run time, the
chosen load balancing policy may select a target node
in the cluster which may well be overloaded or close to
being overloaded. This limitation cannot be overcome
by these policies as they operate with no knowledge of
the effective load of the clustered nodes, at run time.

However, JBoss allows its users to use, at the RMI
level, additional user-defined load balancing strate-
gies. Typically, these strategies can be designed so
as to select the target nodes at run time, based on the
actual computational load of those nodes. In addi-
tion, the latest JBoss version incorporates a so-called
HTTPLoadBalancer Service which implements a re-
sponse time based adaptive load balancing strategy,
for HTTP sessions, only. This strategy is implemented
at a higher level of abstraction than the RMI level
mentioned above, and operates regardless of any host-
ing SLA.

Within this environment, we have created a new
JBoss server configuration that provides deployed ap-
plications with the two middleware levels of our QoS-

aware clustering service, i.e., the macro- and the
micro-resource levels.

The macro-resource level is implemented by an
MBean we have termed MacroResourceManager,
which incorporates our CS and MS. This MBean uses
the following auxiliary JMX services we have imple-
mented in order to carry out the cluster configura-
tion, reconfiguration and monitoring. The MacroRe-
sourceManager uses the following two MBeans: the
MeasurementService MBean, which saves periodically
the cluster state, and the SLADeployer MBean, which
transforms the input SLA, specified in a XML form,
into a Java object.

The MacroResourceManager implements our MS
based on the monitoring architecture described in
[15]. This implementation uses the above mentioned
MeasurementService, and two specific classes termed
Macro Resource Monitoring and Evaluation and Vio-
lation Detection Service.

The Evaluation and Violation Detection Service is
responsible for monitoring, at run time, the adherence
of the run time execution environment to the SLA;
i.e., it detects whether the run time environment con-
ditions (obtained from the Measurement Service) are
close to violating the SLA, and decides the cluster re-
configuration strategy to be performed, if necessary.

The Macro Resource Monitoring is enabled by the
MacroResourceManager, which starts the monitoring
thread. This thread detects i) the current view of the
cluster membership, ii) new members that join the
cluster, iii) dead members that leave the cluster, and
iv) the performance status of the cluster, in terms of
throughput, response time, and probability of rejec-
tion parameters (note that these three parameters al-
low one to detect whether or not the nodes of the clus-
ter are overloaded). In order to carry out its task, the
Macro Resource Monitoring uses the JGroups commu-
nication interface available in JBoss, and the JBoss
clustering framework.

Finally, the current implementation of the Macro
Resource Monitoring sends periodically the data
about the cluster membership, obtained from the
JGroups framework, to the Measurement Service.
This latter Service maintains these data in stable stor-
age for logging purposes.

The CS in the MacroResourceManager MBean im-
plements a distributed cluster configuration protocol,
which can be summarized as follows. Assume that a
JBoss cluster is set up, and that homogeneous applica-
tion deployment is to be carried out within that clus-
ter. Each JBoss node in that cluster embodies a CS
instance in its own MacroResourceManager MBean;



this MBean is identified by a cluster-wide unique iden-
tifier (ID), assigned by the JGroups view management
protocol.

In order to configure the application hosting en-
vironment, the actual application deployment is pre-
ceded by what we term an SLA deployment phase.
In this phase, an SLADeployer is provided with
an application SLA. This SLADeployer enables its
local MacroResourceManager, which becomes the
MacroResouceManager Leader of the cluster config-
uration. This Leader examines the input SLA, and
contacts its peer MacroResourceManagers in the clus-
ter in order to i) discover the resource availability
at these MacroResourceManagers’ nodes, and ii) con-
struct a suitable cluster of nodes that can meet the
input SLA. The possible crash of the Leader during a
cluster configuration (or re-configuration) is detected
via JGroups, and is dealt with by means of a simple re-
covery protocol which elects the MacroResourceMan-
ager with the currently smallest ID as the new Leader.

Note that the nodes in a cluster will host identical
instances of the application, as homogeneous deploy-
ment is being carried out; hence, each node in that
cluster should be capable of honouring the application
SLA. As the cluster is started up, the actual applica-
tion can be deployed and run. Clients can issue RMIs
to any node in the cluster, transparently.

If a failure occurs, (e.g., the crash of a JBoss node in
the cluster), the standard failover mechanism in JBoss
redirects the client RMIs, addressed to the crashed
node, to another active node in the cluster. In the
standard JBoss clustering service, this node will be
selected according to one of the four load balancing
policies introduced earlier, and specified at deploy-
ment time. As these policies select a target node with
no knowledge of the run time computational load of
that node, it is possible that the RMI redirection fol-
lowing a node failure in a cluster lead to overloading
another node in that cluster. In principle, this pro-
cess may continue until all nodes in that cluster are
brought to an overloaded state, as a sort of domino ef-
fect. (Note that this process may defeat the adaptive
HTTPLoadBalancer as well).

In order to overcome this problem, in our imple-
mentation the CS aims to maintaining a fair distri-
bution of the computational load among the clustered
nodes. To this end, in case a node failure or an over-
load exception is raised by the MS within a cluster,
our CS firstly attempts to reconfigure that cluster by
integrating in it a spare node that replaces the faulty
one; that spare node can be obtained possibly from
another cluster (or from a pool of resources reserved

for this purpose, for example). Secondly, if no spare
node is available and the above reconfiguration cannot
be carried out, the CS raises an exception to be dealt
with at a higher level of abstraction (e.g., at the ap-
plication level by adapting the application rather than
the environment).

3 Open Issues

Issues of heterogeneous application deployment can
play an important role in the implementation of our
CS. In this Section, we introduce these issues, and
examine three alternative implementations of our Ser-
vice.

Heterogeneous deployment of application compo-
nents consists of the ability of distributing the compo-
nents of a single application across multiple clustered
application servers, in a controlled manner. As al-
ready mentioned, this form of application deployment
using the JBoss technology is not recommended, as
there are a number of as yet unsolved problems related
to it, including lack of i) distributed locking mecha-
nisms and transaction management for use from entity
beans, and ii) cluster-wide configuration management.
However, we believe that heterogeneous deployment,
in contrast with the homogeneous one discussed ear-
lier, can be particularly attractive when applied to
component-based technologies. Typically, these tech-
nologies adopt a distributed multi-tier paradigm, in
which the application consists of separate components;
namely, web components, and EJB components. In
general, the Web components of an application are
directly exposed to the clients, so as to mask the busi-
ness tier in which the EJB components are located.

In this context, the clustered application servers
can be specialized; thus, one application server in-
stance can be configured for optimum performance for
the support of transactions and Entity Beans, whereas
another application server instance can be configured
for optimum performance in the support of Session
Beans. In addition, as we are considering a scenario
in which client-server communications are enabled via
wide area networks, as clients can be located geo-
graphically far away from the servers, it may well
be convenient to distribute the application so that its
Web components are as close as possible to the clients.
Moreover, in order to reduce the application response
times, it can be desirable to distribute the applica-
tion EJB components so that those directly connected
to the database (e.g. the Entity Beans) are located
as close as possible to the clustered database servers.
This can be done both at deployment time, when the
CS acquires the application QoS requirements (i.e. the
SLA), and at run time, when the application SLA is



close to being violated (as reported by the MS).

Owing to the above observations, three different
implementation approaches of the CS suggest them-
selves; namely, a first approach implementing HEt-
erogeneous Application Deployment (HEAD), a sec-
ond one implementing a HOmogeneous Application
Deployment (HOAD), and finally a third one imple-
menting both forms of Deployment (HHAD). These
three approaches are introduced below in isolation.

• HEAD: In order to implement heterogeneous de-
ployment, the CS has to know in detail the De-
ployment Descriptors (DDs) of all the application
components, at deployment time, so as to opti-
mize the physical distribution of those compo-
nents (i.e., if components communicate by means
of local interfaces, they must be located in the
same JVM, and are to be deployed so as to en-
sure that the SLA is met). At run time, it can be
possible to migrate components from overloaded
nodes to other, more lightly loaded, nodes (pro-
vided that local interfaces be maintained). The
principal advantage of this approach is that the
heterogeneous deployment allows the CS to dis-
tribute the computational load so as to optimise
the use of the available resources in the cluster.
In contrast, its principal shortcoming is its in-
herent complexity. Typically, migration of com-
ponents requires that issues of state propagation,
distributed locking, and management of a cluster-
wide JNDI tree be carefully dealt with (this latter
issue is addressed by the latest JBoss release); in
addition, the application components DDs need
to be examined in order to maintain the local in-
terfaces.

• HOAD: If support for homogeneous deployment
is required (i.e. copies of the entire application
are located in every node of the cluster), the CS
has to establish at SLA deployment time the most
suitable cluster that can host the application. In
this case, the entire application can be deployed
in only one node of the cluster; then, the JBoss
Farming service implements its distributed de-
ployment. If the hosting environment conditions
change at run time, and the SLA is about to be-
ing violated, the CS has to either choose a differ-
ent cluster, or create a new one, and reorganize
the application deployment. The implementation
of this solution appears to be simpler than the
HEAD solution discussed above, as it allows one
to use the current JBoss clustering framework.
However, in order to be effective, a HOAD so-

lution requires that a new adaptive load balanc-
ing policy, which enables the clustered environ-
ment to meet the hosting SLA, be incorporated
in the clustering mechanism at RMI level, as the
currently available load balancing policies at this
level suffer of the limitations discussed earlier.

• HHAD: Finally, the two approaches above can be
combined as follows. At deployment time, the CS
can execute homogeneous deployment by repli-
cating component classes using the JBoss Farm-
ing service; thus, it will create a cluster in which
the application can run, and load balancing ap-
plied. At run time, if the SLA is close to be-
ing violated, the re-configuration activity of the
CS can decide whether to i) add more replicas of
the entire application, ii) add a certain number of
nodes to the initial cluster, i.e. to augment the
number of available resources, iii) migrate appli-
cation components from overloaded nodes either
to other ones in the current cluster, or different
nodes that do not belong to this cluster. The
third option may lead to having different beans of
the same application deployed and running onto
different nodes (i.e., it may lead to heterogeneous
application deployment). However, implement-
ing this option may have a notable impact on
the overall performance of the clustered applica-
tion server, as migrating application components
within the cluster can be very costly. Hence, this
option can be used only when some particular
hosting conditions occur (e.g. critical thresholds
are reached within the hosting environment, and
detected during the SLA monitoring phase). Fi-
nally, even in this third option, we can use the
JBoss clustering features; however, some changes
to the current JBoss implementation are required
in order i) to apply an adaptive load balancing
policy at RMI level, ii) to provide a distributed
transactional manager, and iii) to both manage
migration operations, and improve the perfor-
mance of those operations.

To conclude this Section, we wish to point out that
the implementation we have summarized in Section 2
of this extended abstract falls into the HOAD class of
approaches introduced above; this approach has been
chosen owing to its lower complexity than the HEAD
and HHAD approaches. However, it is worth mention-
ing that we are currently developing implementations
that fall into the HEAD and HHAD classes of ap-
proaches in order to compare and contrast the results
obtained by different implementations.



4 Concluding Remarks

In this extended abstract we have discussed the de-
sign and implementation of a collection of middleware
services we are developing in order to construct what
we have termed a QoS-aware clustering service. This
service is being developed as an extension of the JBoss
clustering service.

It is worth observing that, in principle, a variety of
independent applications can be hosted concurrently
within the same physical cluster of resources. Each of
these applications may have a different SLA with its
hosting environment. In this context, it may well be
worth using a cluster management policy that trades
possible economic penalties, caused by the violation of
a specific application SLA, for resources required by
another application (e.g., as the penalties incurred in
violating the SLA of the former application are less
dramatic than those which would be incurred in by
violating the SLA of the latter application). However,
that cluster management policy may have to be based
on a cluster-wide view of the state of the clustered re-
sources. Depending on the cluster size, this approach
may entail limitations in the scalability of the cluster
management policy. We are planning to assess cluster
management policies via experimental evaluation (see
below).

Finally, we wish to mention that one of our princi-
pal research interests is in assessing those issues of ho-
mogeneous versus heterogeneous application deploy-
ment, discussed in Section3, in the context of a geo-
graphically distributed cluster of application servers.
Specifically, we are investigating issues of QoS-aware
geographical clustering across the Internet using a
VPN technology, named VDE [4], which has been de-
veloped in our Department. This technology provides
its users (i.e., the application servers, in our case) with
the abstraction of an overlay Ethernet Local Area Net-
work (LAN), constructed on top of the Internet. We
are using this technology to build a VPN infrastruc-
ture where application servers can be clustered across
the Internet as though they were connected to the
same Ethernet LAN. The issues of application deploy-
ment discussed in Section 3, as well as the scalability
issues mentioned above, will be investigated using this
infrastructure.

Acknowledgements

We wish to thank our colleagues Graham Morgan
(University of Newcastle upon Tyne), Andrea Ceccan-
ti, and Gabriele D’Angelo (University of Bologna) for
their useful comments on an earlier version of this ex-
tended abstract.

References
[1] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster Re-

serve: A Mechanism for Resource Management in Cluster-
based Network” In Proc. ACM SIGMETRICS Conference,
Santa Clara, CA, June 2000.

[2] ASP Industry Consortium White Papers, SLA for Appli-
cation Service Provisioning, http://www.allaboutasp.org.

[3] BEA, “BEA WebLogic Server 8.1 Overview: The Foun-
dation for Enterprise Application Infrastructure”, White
Paper, August 2003.

[4] R. Davoli, “VDE: Virtual Distributed Ethernet”, Techni-
cal Report TR UBLCS-2004-12, Department of Computer
Science, The University of Bologna, June 2004.

[5] M. Debusmann, A. Keller, “SLA-driven Management
of Distributed Systems using the Common Information
Model” In Proceedings of the 8th International IFIP/IEEE
Symposium on Integrated Management (IM 2003), Col-
orado Springs, CO, USA, March 2003.

[6] http://www-106.ibm.com/developerworks/lotus

[7] http://www-306.ibm.com/software/webserver/appserv

[8] http://www.jboss.org

[9] http://www.jgroups.org/javagroupsnew/docs

[10] http://www.objectweb.org

[11] JBoss Group, ”Feature Matrix: JBoss Clustering (Rabbit
Hole)”, 19 March, 2002.

[12] A. Keller and H. Ludwig, “The WSLA Framework: Spec-
ifying and Monitoring Service Level Agreements for Web
Services”, IBM Reseach Report RC22456, March 2003.

[13] S. Labourey and B. Burke, “JBoss Clustering 2nd Edi-
tion”, 2003.

[14] Miguel A. de Miguel, “QoS-Aware Component Frame-
works” In Proceedings of the 10th International Workshop
on Quality of Service - IWQoS2002, Florida, 2002.

[15] C. Molina-Jimenez, S. Shrivastava, J. Crowcroft and P.
Gevros, “On the Monitoring of Contractual Service Level
Agreements”, 1st IEEE International Workshop on Elec-
tronic Contracting (WEC), July 2004, San Diego.

[16] B. Shannon, Java 2 Plaftorm Enterprise Edition v. 1.4,
Sun Microsystem, Final Release 24 November 2003.

[17] K. Shen, H. Tang, T. Yang and L. Chu, “Integrated Re-
source Management for Cluster-based Internet Services”
In Proc. 5th Symposium on Operating Systems and De-
sign and Implementation, USENIX Association, Boston
Massachussets, USA, December 9-11 2002.

[18] J. Skene, D. Lamanna and W. Emmerich “Precise Service
Level Agreements” in Proc. 26th of the International Con-
ference on Software Engineering (ICSE’04), Edinburgh,
Scotland (UK), 25 May 2004.

[19] Sun Microsystem, “Java Management eXtension: In-
strumentation and Agent Specification v.1.1”, 2002,
http://java.sun.com/jmx.

[20] B. Urgaonkar, P. Shenoy and T. Roscoe, “Resource Over-
booking and Application Profiling in Shared Hosting Plat-
forms” In Proc. 5th Symposium on Operating Systems
and Design and Implementation, USENIX Association,
Boston Massachussets, USA, December 9-11 2002.

[21] T. Zhao and V. Karamcheti, “Enforcing Resource Sharing
Agreements among Distributed Server Clusters” In Pro-
ceedings of the 16th International Parallel and Distributed
Processing Symposium (IPDPS), April 2002.


