
Testing J2EE clustering performance
and what we found there∗

Davide Rossi, Elisa Turrini

Dipartimento di Scienze dell’Informazione, Università di Bologna
{rossi|turrini}@cs.unibo.it

∗ This work was partially supported by the EU project TAPAS (IST-2001-34069) and the WebMinds FIRB project of the Italian Ministry of
Education, University and Research

Abstract

In this paper we investigate issues about clustering
performance of JBoss, an open source J2EE compliant
application server. We evaluate: (I) how clustering
affects the performance of the system; (II) which is the
best setup to improve clustering performance; (III) if it
is more convenient to manage session information at
the Web tier or at the Business tier.

1. Introduction

In the last few years the Java 2 Enterprise Edition
(J2EE) platform [1] has become the most popular
technology for the design and the development of
enterprise applications. J2EE is a distributed
multitiered architecture: a typical application is
composed by a client tier (usually composed by a web
browser but it can be a specific application as well), a
Web tier (present only when the clients are browsers or
software components that support web services), a
Business tier that contains the components
implementing the business logic of the application, and
an Enterprise Information System (EIS) tier that stores
the persistent data used by the application. The EIS is
usually a relational database that connects with the
application server using specific technologies (such as
JDBC).

In this paper we investigate the clustering
performance of JBoss[2], an open source J2EE
compliant server, by comparing different load
balancing and high availability strategies that can be
implemented at Web tier and at the Business tier.
Specifically, we aim to find out the weak and strong
points of a clustering architecture. We also investigate
(I) how clustering affects the performance of the whole
system, (II) which is the best setup to improve
clustering performance, (III) if it is more convenient to
manage session information at Web tier or at Business

tier. Our studies show that clustering should be
considered with care, mostly if session data
replications is involved. Due to the severe impact
session data replication has on system performance, it
should be applied only to the (restrict) class of
applications that cannot afford to lose session
information.

The paper is organized as follows: in the next
session a background of the J2EE architecture is
provided, in Section 3 we present some interesting
related work in this area. In Section 4 and 5 we
describe the test environment and the experimental
results. Finally, in Section 6, we present the conclusion
and the future work.

2. Background

2.1 J2EE architecture
A J2EE compliant application server is composed by
the Web container (or servlet container) and the
Business container (or EBJ contatiner); the Web
container hosts presentational components (the
servlets) whereas the Business container hosts business
logic components (the Enterprise Java Beans, EJBs).
In the logical architecture of J2EE the web container
implements the web tier whereas the EJB container
implements the business tier.

Clustering cross-cuts these two logical tiers in
multiple physical locations. This means that both the
component container of the Web tier and the
component container of the EJB tier can be hosted in
multiple nodes.

This leads to several possible solutions when taking
clustering into account:
• Web tier and EJB tier co-located, no clustering;
• Web tier and EJB tier physically split, no

clustering;
• Web tier and EJB tier co-located, with clustering;

• Web tier and EJB tier physically split, with
clustering.

All of these alternatives are possible and a number of
issues have to be taken into account when choosing the
better one.
Web tier and EJB tier co-located, no clustering.
When the tiers are co-located and there is no clustering
the entire application server runs on a single node. The
invocation of a component in a different tier can be
executed in process, there is no need from remote
invocations: a single request from the client tier can be
satisfied by the application server inside a single node
(apart from the access to the EIS). Of course the
system cannot scale and we are in the presence of a
single point of failure.
Web tier and EJB tier physically split, no
clustering.
The application server is hosted in two different nodes;
the first one hosts the servlet container, the second one
hosts the EJB container. Each access from the client to
the application thus involves (at least) one network call
between components in the two tiers (plus the potential
access to the EIS). The components in the Web tier
and in the EJB tier draw resources from two different
machines but we now have two single points of failure.
Web tier and EJB tier co-located, with clustering.
The application server is hosted in multiple nodes:
each node hosts both a servlet container and a EJB
container. Requests from the client tier can be satisfied
inside a single node (apart from the access to the EIS).
The nodes can be used for load-balancing and for high
availability purposes.
Web tier and EJB tier physically split, with
clustering.
The application server is hosted in multiple nodes:
each node hosts either a servlet container or a EJB
container.
Each access from the client to the application thus
involves (at least) one network call between

components in the two tiers (plus the potential access
to the EIS). Both the nodes that host the Web tier and
the nodes that host the EJB tier can be used for load-
balancing and for high availability purposes.

servlet

container

EJB

container

2.2 Clustering
What are the advantages of using a clustered solution?
A cluster provides to the client a unified view of the
services that each node offers individually. Basically,
the clustering has been introduced to improve
availability and throughput. With availability we mean
the percentage of time the system is available for use
by its client. In a cluster, if a node crashes (for an
hardware or a software failure), the requests originally
meant for the failed node can be redirected to other
nodes belonging to the same cluster. More nodes are
present in a cluster, higher the availability offered by
that cluster will be. The throughput is the number of
requests that the system can satisfy in a given amount
of time. Another advantage of clustering is improved
throughput: when a request arrives, it can be redirected
to whichever node in the cluster by applying a load
balancing policy thus sharing the load among all the
nodes of the cluster.

In the J2EE architecture, the load balancing policy
can be applied either at the Web tier or at the Business
tier, according to which architecture is used. In the co-
located tiers architecture, the load balancing of the
requests should be done at the Web tier. We present
two possible solutions for load balancing at the Web
tier:
Apache and mod_jk
The cluster is front-ended by a load balancer that
redirects the requests to the back-end nodes according
to the Round-Robin policy. This solution can be
implemented using Apache and mod_jk[3]. Note that
in this architecture the web server running Apache
with mod_jk is a single point of failure, for this reason,
one should configure other machines that can on the
fly substitute the crashed server.
HTTPLoadBalancer
If the J2EE server is JBoss, HTTPLoadBalancer[4] can
be an alternative solution. HTTPLoadBalancer is a
package deployable in JBoss. It acts as reverse proxy:
it redirects the requests to the nodes and collects the
responses. HTTPLoadBalancer can be set to apply a
load balancing policy that takes into account the real
load of every node.

At the Business tier, JBoss implements three load
balancing policies: Round Robin, First available, and
AvailableIdenticalAllProxies. These policies are
automatically disabled for local calls, as it will be too
much expensive, in terms of performance, to invoke a
component running on a different Java Virtual

load
balancer

database

servlet

container

EJB

container

client

browser

client tier web tier business tier EIS tier

Figure 1: JBoss suggested configuration for clustering

Machine (JVM) when an in process solution is
possible. Because of this JBoss embedded load
balancing techniques can be applied in the case of Web
tier and EJB tier physically split architecture only. It is
worth noting that no one of the current load balancing
JBoss policies takes into account real nodes load
conditions.

Both clustering options described previously (co-
located tiers and split tiers) allow for load-balancing
and high availability; it should however also be noticed
that, while load-balancing comes essentially for free,
when enabling high availability there is a (big) price to
pay caused by the necessity of maintaining a coherent
session state. Typically, when a user visits a given site
a session is established. During a session, information
concerning a given user, or the action he/she performs,
are maintained on the server. These information are
typically discarded when the user session is over hence
they are not committed to stable storage as persistent
data. In an e-commerce site, a typical example of this
information is the shopping cart.

Since the HTTP protocol has not being specifically
designed to manage sessions (it is a session less
protocol), a small chunk of information (a cookie) is
included by the client with its requests in order to
allow the application server to associate a user with
their session data. On the server-side, session
information can be maintained at Web tier (in a shared
component accessible by the servlets) or at EJB tier,
using the stateful session beans (SFSB) that are state-
aware components. In both cases, if a node containing
a stateful components crashes and we want another
node to take over, the new node has to carry a state-
aware copy of the stateful components that were in the
crashed node or should be able to dynamically create
new state-aware copies when needed (this second
option, typically implemented via checkpointing and
recovery, is not usually a viable one for J2EE servers
so in the rest of the paper we will focus on the first
option: active replication).

Note that if session information are not replicated,
when a node crashes only the sessions data stored in
that node are lost. This implies that users belonging to
those sessions have to initiate a new session (e.g. to
login again into the system); no consequences impact
other users with sessions data stored into different
machines. These considerations imply that only critical
applications need session replications. When
replication is needed all the J2EE compliant
application servers that support clustering achieve high
availability by having active, synchronized replicas of
the state-aware components instantiated in multiple
nodes of the cluster.

Unfortunately, maintaining a coherent state among
nodes in a cluster can be quite expensive as it requires
messages exchange among nodes. This augments the
load of the nodes, and reduce the resources that a node
can use to satisfy user requests, affecting negatively
the performance of the application.

Since J2EE is a transactional architecture in which
all clients requests that get into the EJB tier are
enclosed in a transaction, the replicated components
have to synchronize their state before the transaction is
over. This is commonly achieved by using a reliable
multicast layer that ensures that the new state of a
component is correctly distributed to its replica in a
synchronous way before committing the transaction.
This implies that keeping a correct synchronization
between distributed replicas of state-aware components
in a J2EE architecture introduces a not-negligible
overhead: this is the price to pay we were referring to
above.

The motivations of having a cluster is to improve
both availability and throughput, but, as previously
explained, improving the availability by sessions data
replication can worsen the throughput. In the next
sections we measure with experimental tests how
sessions data replication affects the throughput.

3. Related Works

The performance of J2EE technologies is a hot issue in
the e-business community. This wide research area can
be divided in three sub-areas:
• comparing the performance of the different J2EE-

compliant servers in order to find which is the best;
• find the setup, for each J2EE-compliant server, that

allows to achieve better performance;
• analyzing the design patterns that can be applied in

the development of a J2EE application in order to
find the ones that ensure the better performance.

One of the main testing performance problems is to
decide which application should be used for testing, as
the results can change considerably according to the
characteristics of the application and to the adopted
methodology.
 ECperf[11] is a widely used tool, it consists of a
benchmark and implementation for measuring
performance and scalability of J2EE-compliant
servers. In [6][7] the authors use ECperf to identify
and discuss the factors that have the most relevant
performance impact on J2EE applications. They also
examine the point that are crucial for scalability and
that could often turn into system bottlenecks. The
authors then propose a list of optimization techniques

that could be applied to boost the performance of any
arbitrary J2EE application.
 The main drawback of using ECperf is that all the
tests are performed on a specific, although realistic,
application.
 As an example of a different approach, in [5] the
authors perform a comparison between two J2EE
servers, Jonas [12] and JBoss, by comparing six
versions of the same application implemented using
different strategies. Specifically, the versions differ in
the business logic location (servlets or EJBs) and in the
methods used to interface with the persistent storage
(CMP and BMP entity bean). To some extent this
paper is similar to ours as it evaluates different design
strategies applied to a specific application; the
differences with respect to our work are mainly two:
(I) we are interested in specifically evaluating
clustering performance; (II) we do not compare
implementation choices but session data replication
strategies.

An alternative approach to performance evaluation
for J2EE applications is proposed in [8], where the
authors model the characteristics of the application
server and the application itself in order to predict the
performance of the application once deployed. The
performance model allows the system designer to
make decisions among alternative implementation
strategies. It is interesting to note that the authors also
explore the performance of an application deployed
over a two-nodes server cluster obtaining results
similar to those of our tests.

4. Experimental Environment

Several J2EE compliant servers are available. We
chose JBoss because, at the time of this writing, it was
the only open source application server that supported
clustering at the Business tier level. In order to stress
JBoss, we implemented a typical e-business
application: a virtual book store.
Client emulator
In order to emulate client load and take measurements
we used JMeter[9]. We emulated a typical user session
(home page, login, visualize items, add to cart, delete
from cart, confirm order, buy). In each experiment, we
ran for a total of 60 users at the same time, each user
performed 20 sessions (we chose these figures after
different tests since they assure a request rate high
enough in order to maximize the throughput but not so
large to overload the server).
Server Environment
We used JBoss 3.2.3 in standard configuration. The
chosen servlet container was Jakarta Tomcat v. 4.1

(embedded in JBoss). We made up a cluster of two
machines with similar hardware and software
characteristics (Pentium IV 2GHz processor, 1 GB of
RAM, Debian Linux OS).

For dispatching HTTP requests we installed
Apache Web server with mod-jk2 (as proposed in
JBoss documentation) on a different machine; the load
balancing policy applied was Round-Robin. An
alternative solution to the use of Apache+mod_jk2 is
HTTPLoadBalancer, but at the time we deployed our
tests only a Beta version was available.

In the implementation of the standard cluster
configuration shown in the Figure 1, we used MaxDB
[10] as BDMS and located it in a dedicated host. We
also tested a setup with HSQL [15] (an in-memory
database) in place of MaxDB.

5. Experimental results

In this section we describe the experiments we
performed and the results we obtained.
Single node
First of all, we ran the benchmark against the
application deployed in a single node obtaining the
results shown in Table 1.

Response time (ms) Throughput (res/sec)
507 80,4

Table 1

Two nodes: standard configuration
After that, we ran the benchmark against a cluster set
up as suggested in the JBoss documentation:
apache+mod_jk, two machines running JBoss
instances and the database on a dedicated host (see
Figure 1). We obtained a performance degradation: as
shown in Table 2, the response time is more than
tripled, while the throughput has become a fourth.
Since the application was deployed with no replication
at all, the performance degradation could be caused by
the overhead introduced by mod_jk or by the one
introduced by the database when accessed by multiple
clients (e.g. the database could turn out in a
bottleneck). To better understand, we evaluated
separately the overhead caused by these two entities.

Response time (ms) Throughput (res/sec)
1726 24,6

Table 2

Mod_jk2
We evaluated the overhead introduced by mod_jk. We
ran the benchmark against a single node with mod_jk
at the front-end. The results in Table 3 show that the
performance degradation is about 20%, both for the
response time and for the throughput.

Response time (ms) Throughput (res/sec)
610 67

Table 3

Database
In order to evaluate the overhead introduced by the
database, we tested the performance of a single node
when another node is accessing to the database with
similar load. The results in Table 4 show that the
response time doubled while the throughput becomes
one half.

Response time (ms) Throughput (res/sec)
1020 47

Table 4

It is easy to see that both mod_jk and the bottleneck at
the database introduce large overheads. Then, in order
to insulate the performance of the clustering we
decided to change our architecture: as shown in Figure
2, we used an instance of HSQLDB in each node in
order to avoid all possible resource contention at the
database level and we load-balanced the requests
directly at the client level (of course this is a
meaningless setting in a production systems, but it
makes sense for our testing purposes).

In order to test the effectiveness of different
configurations where session information are stored or
in the Web tier or in the EJB tier, we implemented two
versions (functionally equivalent) of our test
application: one that uses servlet’s sessions and one
that uses stateful session beans. Note that the only way
to find the stateful session bean that is holding the data
relative to a single client is to store the reference for
this bean in a such a way the client can find it across
subsequent invocations. But if we store this reference
in a single node we have a new single point of failure.
There is no easy workaround for this problem but
cookies can be used to force the client itself to store a
serialized version of this reference and send it along
with its requests: the new single point of failure is the
browser but this is a single point of failure anyway for
most web applications.

servlet

container

EJB

container

database

Test

application

For our stress tests we chose the following
configurations:
• C1: single node-application server; application with

session state handling at the Web tier;
• C2: double node-application server; application

with session state handling at the Web tier; no state
replication;

• C3: double node-application server; application
with session state handling at the Web tier; Web
tier (servlet sessions) state replication;

• C4: double node-application server; application
with session state handling at the Business tier; EJB
tier (stateful session beans) state replication;

• C5: double node-application server; application
with session state handling at the Business tier;
both Web tier and EJB tier state replication.

The results obtained with these different configurations
are shown in Table 5 and, graphically in Figure 3.

Configuratio
n

Response time
(ms)

Throughput
(res/sec)

C1 507 80,4
C2 256 145,9
C3 1207 45,8
C4 853 58,2
C5 2251 40,1

Table 5

Comparing the results of C2 and C3, it is easy to see
how expensive the synchronization of the replicated
servlet sessions is. The response time is about five (!)
times the one obtained with the two independent nodes
and the throughput is one third.

client tier web tier business tier EIS tier

Figure 2: our test configuration

EJB

container

servlet

container

database

Comparing C3 and C4, it seems that replication at the
EJB tier level is less expensive than the one at the Web
tier level. But, as we explained above, we have the
problem of storing the reference to the stateful session
bean that holds the session data for a specific user.
It is easy to see how bad these results are. It is even
worse if we think that C3 is probably the most used
clustered configuration[13][14]. Session replication
should only be used for the most critical application
where re-login and lose your session data is not an
option.

6. Conclusions and Future work

Clustering is an exciting feature of the J2EE
architecture: it promises both load balancing and high
availability. The two things, however, do not go along
very well. Load balancing can be achieved quite easily
with an hardware load balancer in front of the
application server cluster (while software solutions like
mod_jk have inherent limitations and should be
deployed with care) but high availability imposes a
huge price to pay both in terms of response time and
throughput. In our tests it turns out that enabling state
replication between different nodes leads to
performance that are worse than the one of the single
node by two/three times (at least) voiding all the
possible advantages of load balancing.

It should be noted that the results we obtained are
strongly application dependant. We tried to run our
tests against a very standard application. By avoiding
contention on the database we probably inflated the
advantages of load balancing with no replication, but
our aim was measure the overhead of high availability
solutions inside the application server; for real world

applications both the overhead of replication and
database contention has to be taken into account.

sta
nd

ard
 co

nf.

C1
C2

C3
C4

C5

1726

507

256

1207

853

2251

24,6 80,4 145,9
45,8 58,2 40,1

F igure 3: test results

throughput

response time

We are currently setting up other test applications and
test suites in order to better take into account real-
world applications and load patterns. In the stress tests
we presented in this paper all the simulated users
access one resource after another with no pause
whatsoever. This is meaningful in order to test the
overhead of architectural solutions in the application
server but in order to test an applications under
realistic load we have to model the users: their path
between the views dispatched by the web applications,
their think time and so on. To run this kind of tests we
are implementing an extension of JMeter to ease the
simulation of a group of “real” users. Once the tool is
ready we expect more interesting results about J2EE
clustering in real world applications.

7. References
[1] http://java.sun.com/j2ee/
[2] http://www.jboss.org/index.html
[3] http://jakarta.apache.org/tomcat/tomcat-3.3-

doc/mod_jk-howto.html
[4] http://www.jboss.org/wiki/PageInfo.jsp?page=HTTPL

oadbalancer
[5] E. Cecchet, J. Marguerite and W. Zwaenepoel,

“Performance and scalability of EJB applications”, in
Proceedings of the 17th ACM Conference on Object-
Oriented Programming, Systems, Languages and
Applications (Oopsla 2002), Seattle, WA, USA,
November 2002.

[6] S. Kounev and A. Buchmann, “Performance Issues in
E-Business Systems”, in Proceedings of the
International Conference on Advances in Infrastructure
for e-Business, e-Education, e-Science, and e-Medicine
on the Internet (SSGRR-2002w), L'Aquila, Italy,
January 2002

[7] S. Kounev and A. Buchmann, “Improving Data Access
of J2EE Applications by Exploiting Asynchronous
Messaging and Caching Services”, in Proceedings of
the 28th International Conference on Very Large
DataBases (VLDB'02), Hong-Kong, August 2002.

[8] Y.Liu, A. Fekete, I. Gorton, “Design Level
performance modelling of Component-based
Applications”, Technical Report n. 543, November
2003

[9] http://jakarta.apache.org/jmeter/
[10] http://www.mysql.com/products/maxdb/
[11] http://www.spec.org/jAppServer2004/
[12] http://jonas.objectweb.org/
[13] Sacha Labourey and B. Burke, “JBoss Clustering”,

JBoss official documentation series.
[14] Howto: Clustering with JOnAS, available at

http://jonas.objectweb.org/current/doc/howto/Clusterin
g.html

[15] http://hsqldb.sourceforge.net/

	1. Introduction
	2. Background
	2.1 J2EE architecture
	Web tier and EJB tier co-located, no clustering.
	Web tier and EJB tier physically split, no clustering.
	Web tier and EJB tier co-located, with clustering.
	Web tier and EJB tier physically split, with clustering.

	2.2 Clustering
	Apache and mod_jk
	HTTPLoadBalancer

	3. Related Works
	4. Experimental Environment
	Client emulator
	Server Environment

	5. Experimental results
	Single node
	Two nodes: standard configuration
	Mod_jk2
	Table 3

	Database
	Table 4
	Table 5

	6. Conclusions and Future work
	7. References

