

An Approach to Adaptive Performance Tuning of Application Servers

Giovanna Ferrari,
School of Computing Science
University of Newcastle, UK
giovanna.ferrari@ncl.ac.uk

Santosh Shrivastava,
School of Computing Science
University of Newcastle, UK

santosh.shrivastava@ncl.ac.uk

Paul Ezhilchelvan
School of Computing Science
University of Newcastle, UK
paul.ezhilchelvan@ncl.ac.uk

Abstract

Controlling Quality of Service (QoS) offered by
application servers involves selecting appropriate
configuration and parameter tuning that would match the
application level load. This is a challenging problem, since
application servers have many parameters at different
levels that often influence the QoS in complex ways. This
paper presents an empirical approach to keep the QoS
offered close to the level specified by the hosted
applications, using on-line configuration tuning. Based on
this approach, an automated tuning system is currently
under development to monitor and adapt the application
server performance under variable load conditions.

1. Introduction

An e-Business site should provide specific services to its
customers with agreed QoS attributes such as end-to-end
response time, site response time, throughput in
requests/sec and so forth. However, the unpredictability of
the environment complicates the problem of maintaining
adequate QoS levels. In fact the workload of an e-Business
site could be highly dynamic and may have load spikes
that far exceed the average load; besides, there can be
variations in the resource requirements, due to node
failures or troubles with the internal software. When
workload surges appear, performance degrades
significantly.

In the work presented here, we have addressed the
problem of maintaining adequate QoS levels under such
conditions by implementing an automated tuning system
based on an adaptive approach. It monitors performance of
the application server, which can be considered the
bottleneck of the e-Business platform. In case of variations
of the load conditions, it applies an adaptive strategy by
dynamically changing configuration parameters of the
application server. The values to assign to each parameter
are based on pre-computed experimental results. A
benchmark test suite has been used to exercise the system
and measure its behavior with different configuration
settings.

Data has been collected on the most appropriate set of

configuration parameters under a given loading condition;
this data is used at runtime to change configuration
settings as variations in load are detected.

A major challenge in performance tuning occurs because
e-business IT activities exhibit an inherent complexity
which developers find hard to quantify. While component-
based technologies provide flexible infrastructure solutions
for developing e-Business applications, they also introduce
a multi-layer structure which admits various architectural
trade-offs to be made and design patterns be used.
Consequently, the task of performance tuning becomes
complex, as the effects of many possible combinations of
trade-offs need to be understood.

The problem is exacerbated by the fact that an e-
Business site typically includes a cluster of application
servers, which are not necessarily homogeneous. For
tractability, we distinguish two levels of performance
tuning: a macro-level adaptation that regulates controls at
the cluster level (e.g., load balancing); and a micro-level
adaptation that deals with performance tuning at a finer
granularity of resources internal to an application server
(e.g., server queues and connection pools). In this paper,
we focus only on the latter.

The outline of the rest of this document is as follows.
Section 2 provides some background on middleware
technologies used within e-Business sites. Session 3
explains the main issues on configuration tuning of
application servers. Section 4 describes the implementation
of the automated tuning system. Related works are
presented in section 5. Section 6 concludes the paper.

2. The E-Business Site

E-Business sites provide services to their customers
using middleware technologies to deploy, host and manage
enterprise applications. At peak loads, these systems are
susceptible to large volumes of transactions and concurrent
users. And yet they are expected to maintain the offered
QoS metrics while scaling appropriately to handle different
bursts of traffic in a predictable manner.

If problems arise in the service provisioning at
application run time, it is the responsibility of the e-
Business site to adapt the system platform, in order to
prevent or minimize the possibility of violation of the
agreement with the customers. The main issue is to design
a system with confidence that it will perform well enough
to meet Service Level Agreements, the legally binding
contract between the e-Business site and the customer [1].

Fig.1: Structure of an e-Business site

Fig. 1 shows a conventional structure for e-Business
sites. It is a multi-layered structure, logically divided in
several tiers. Usually we can expect to have the following:
Presentation Tier that runs within a web server that hosts a
number of components based on web technologies such as
HTML for static contents, or JSP and Servlet for dynamic
contents; Business Tier that runs within an application
server and provides for the case of Java component
middleware (J2EE), EJBs, RMI classes, JDBC pool, and
their associated business logic; and Data Tier that consists
of one or more databases and a database server that
manages data persistence.

Technologies behind e-Business solutions are the current
component-oriented architectures that promote the use of
containers to host component instances, such as J2EE,
CORBA, COM+/.NET. Using these middleware
architectures, developers of e-Business applications are
free from explicitly handling issues such as transactions,
database interactions, concurrency; all of them handled by
the application server.

It has been demonstrated that application servers are
often the bottleneck of the e-Business site platform [2].
The main problem of predicting application server
performance is not straightforward. The tight coupling of
application components and component infrastructure
introduces a high level of complexity in predicting the
effects of various architectural trade-offs. For instance, it
has been observed that the same technology with different
vendors [3], or different classes of e-Business applications
[4], or even the same application type, but implemented
using different design patterns [5] perform differently from
an instance to another. Furthermore some of the
differences become even more significant as the same test
case is scaled to run on more application server nodes in a

clustered platform, in attempt to increase the overall
application throughput [3].

Nevertheless application servers are designed to be
flexible and application deployers are provided with
‘knobs’ to tune several components of the application
server. But in many cases application servers are
configured using a mixture of rules-of-thumb, intuition and
trial-and-error approaches [4].

The solution we are investigating attempts to find the
‘best’ configuration settings by monitoring of the
application server and extracting runtime performance
characteristics, under experimental conditions with an
adequate set of benchmarking application. The information
collected in this way is employed at runtime to adapt the
system to the variations of the workload conditions, and
automatically tuning the configuration parameters along
the lines discovered with testing.

For our work, we have focused on specific middleware
architecture, the Java 2 Platform Enterprise Edition (J2EE)
[8], and, more precisely, on JBoss [9].

3. Tuning Configuration Parameters

Performance of application servers depends heavily on
appropriate configuration, but to choose the correct
settings of parameters is a difficult and error-prone task,
given that application servers may have more than a
hundred parameters that can be modified and many of
them may present complex interactions [6].

An important distinction among the overall setting of
configuration parameters is that the modifications can be
statically or dynamically carried out. In the former case,
parameters are assigned only at server set-up time; in the
latter case the parameters can be tuned at run-time. In the
rest of the paper we shall consider only the dynamically
tuned parameters, since our aim is to provide on-line
performance tuning, without shutting down the application
server.

Generally, the administrator of the server nodes
manually tunes these parameters to optimize the
performance, using best-practice guides and profiles.
There are cases in which the best configuration of the
server is found to be in conflict with the best practice
suggestion [4].

Modification of the configuration can be applied at
different level of the single node.

At the process level, the Java Virtual Machine (JVM)
can be started with the –Xmx <size> option, which sets
the maximum JVM heap size, that is the maximum amount
of memory allocated to the JVM in which the application
server executes [7].

At the server level it is possible to specify the group of
services for the application server start-up, i.e. the
minimum number of services required to start the server;
the default J2EE; or the configuration containing all the
available services, included clustering.

At the component level, examples include the
configuration of multiple thread pools, queues, cache size,
and timeout and retry values. In JBoss, for instance, there
is the Backlog parameter, which sets the maximum queue
length for incoming connection requests, so that if a
connection request arrives when the queue is full, the
connection is refused; the Database Connection Pool Size
(DCPS) parameter, which sets the size of the pool of live
database connections that can be concurrently handled, or
reused in order to reduce the overhead of opening new
connections; the Thread Pool Size (TPS) parameter, which
represents the number of live server threads maintained in
a pool, accepting requests from the waiting queue and
handling simultaneous client sessions.

In particular, TPS is a critical parameter, because it
dictates the concurrency level at the application server. A
small number of threads may work well for providing
good response time, but there is higher probability of
rejecting client requests, leaving the server under-utilized;
on the contrary, a high number of concurrent threads
increases utilization but slows down response time.

Our experience in tuning this parameter during
benchmarking tests shows that, at a fixed load, increasing
TPS leads to an improvement of both response time and
throughput; but this is true until only a certain value, after
which the application server saturates. The trade-off is that
there is a point at which the overhead associated with
context-switching, i.e. giving the CPU to each of the
threads in turn, becomes so costly that performance
dramatically degrades. Therefore it is important to find the
best setting at a given workload, even applied to more than
one parameter, which may influence each other.

Still one could argue that it is sufficient to size the
system so that it can provide the best resource availability
for serving the maximum number of requests under peak
of loads. For instance, it could be possible to set TPS at the
highest value, even if the load is low. When the workload
intensity increases, there will already be the maximum
available number of threads waiting for serving a high
number of incoming requests.

It happens instead that balanced configuration setting can
avoid build up queues of jobs waiting to be served.

A client request, as shown in figure 2, can encounter
waiting either at the application server door, waiting to be
served by a server thread, or at the database server door,
waiting to write/read data in the database for its
computations. If the number of threads serving requests is
too high, the queue at the database increases and the

database become congested. On the other hand a low
number of threads can build up queues at the application
server door, leaving the database under-utilized.

Fig.2: Queues at Different Tiers

Another important reason for applying configuration
tuning is that a shared resource is optimally accessed
without setting the configuration parameter at the highest.
For example, let’s consider the case of a database shared
among different application server instances (a cluster).
Each application server maintains its pool of database
connections, and the size of the pool is the maximum
number of connections to the database that can be
concurrently open. It is worth keeping the number of
connections at a low level when there is no high workload,
so that the access on the connection table is faster for the
overall set of nodes in the cluster.

As result, it is worth using configuration tuning that can
support the achievement of the best performance of overall
system at any time, without leaving resources under-
utilized.

4. Automated Tuning System

To monitor and adapt the application server to the
variation in the workload we have realized an automated
tuning system, fully integrated on the application server
platform. We have focused on an open source
implementation of the J2EE architecture, the JBoss
application server [9]. However a similar strategy can be
applied to any other application server technology, the
only requirement is the presence of server knobs to use for
automatically tuning the configuration parameters.

JBoss is an open-ended middleware, in the sense that
users can extend middleware services by dynamically
deploying new components into a running server. The
foundation of JBoss middleware components is the JMX
specification [10], which provides a lightweight
environment where components can be dynamically
loaded and updated, and which makes JBoss manageable.
JMX provides a common software bus that allows the
integration of components, such as modules, containers,
and plugs-in, declared as MBeans services, where the
MBean is the Java object representing manageable
resource (any device, application or Java object. On top of
it, JBoss introduces its own model for the components,

centered on the service components, the modules that
implement every key feature of the J2EE technology.

As it is suggested in [12], the basic architecture for an
automated tuning system is made of the target system,
which is the JBoss application server being managed, and
two kinds of interfaces with the target system. The first is
represented by the Monitor component, which provides
access to performance data. The second is represented by
the Controller component, which provides access to the
tuning knobs that control the performance of the target
system.

The metrics that we have chosen to control are: server
Throughput, i.e. the number of requests per second that
complete execution from the system; and server-side
Response Time (RT), i.e. the time elapsed since a request
arrives at the system until it is completely processed and a
reply is sent back. No network time is included. So, the
clients of the application server are the effective “proxy-
clients”.

The Monitor component periodically collects the data on
server QoS, which are maintained in the Actual QoS
object. The object is updated by the Invocation Data
component that detects client method calls to the EJBs of
the running application, using an interceptor to detect the
inbound and outbound times. It exploits the interceptor
stack of stateless components, in which every call proceeds
through the stack from first to last, until the target EJB
component is called. After the EJB has finished with its
method, the call will unwind through the stack in reverse
order [11].

Whenever a method call is issued on the client-side
proxy, the RMI call is routed by an Invoker MBean at the
server side, where is routed through the chain of
interceptors associated to the container of the target EJB,
among which there is our monitor interceptor.

The Controller component has the duty of maintaining
performance at an acceptable level, defined by Agreed
QoS. Therefore it periodically compares this Agreed QoS
with the values of the Actual QoS provided by the
Monitor. If the evaluation is above a fixed threshold, then
there is an early warning and the adaptive strategy is
applied. The adaptation is carried out tuning the
application server configuration, and directly modifying
the configuration parameters exposed in the MBean
interfaces of the manageable resources.

The new server configuration is selected among a set of
optimum configurations. This set is originated by an off-
line testing phase that precedes the on-line run of the
hosted application. During the testing phase, the
application server performance is measured with a
benchmarking application; the best configurations at
different loads are selected. At application run-time, the

parameters are automatically tuned, without requiring any
human action.

Both the Monitor and the Controller components are
started and managed by the Micro Resource Manager
MBean.

These are the components that provide QoS control, the
shaded ones depicted in Fig.3. At application server
startup, the MBean server starts the Micro Resource
Manager MBean, which runs the Monitor and the
Controller component. The former gets the Actual QoS
object from the Invocation Data component, which is
updated by the interceptor. The latter examines the
acquired values and decides to tune the configuration of
selected MBeans.

Fig.3: Automated Tuning System

During the testing phase, the evaluation of the
performance is carried out with the use of ECperf [13]. It
is a benchmark application for measuring performance and
scalability of e-Business systems built by Sun in
conjunction with J2EE application server vendors. The
series of simulated events that represent the business
problem modeled are based on manufacturing, supply
chain management, and order-inventory, all of them
requiring the use of many middleware services, which are
stressed and measured by the benchmark. The workload
generator is simulated by a multithreaded application that
spawns several agents to simulate the clients. The activities
of the agents are related to the chosen injection rate, the
rate at which business transactions requests are sent to the
server.

The result of one of the tests that has been conducted is
shown in the graph in Fig.4. The graph represents the
variation of RT during the steady state of an ECperf run, at
a constant injection rate.

Throughout the simulation time, the values of the
configuration parameter TPS and DCPS were increased,

from the default values, in conf_1, to five times these
values, in conf_4.

The RT obtained improves at each configuration change.
The conf_1 shows a quite uneven RT plot since many of
the ECperf requests to the database were rejected, because
of the limited number of database connections. The high
error rate decreased with the increment of DCPS. The best
configuration shown in this example is the conf_4, which
has as side effect a higher consume of node and database
resources, which should be taken in account in case of
shared resources.

Fig.4: ECperf test: Application Server RT

Adaptation at run time can start before the violation point
of the QoS metric is reached. For instance, it may occur
that the QoS metric is violated for a short time, which
denotes that the violation point is not reached yet and that
configuration tuning can be effective.

The described adaptation policy is operative at node-
level and it is defined as micro-level management. We
introduced this term for tractability, to make a distinction
between a single node and a collection of application
server nodes.

It is worth considering that, to achieve application server
scalability in the enterprise environment, the client
requests can be distributed among multiple cooperating
server node of a cluster. Therefore, in case high workload
burst, also due to node failures, for instance the crash of
some of the nodes in a cluster may overload the others, the
violation of the agreement, as stated in the Agreed QoS, is
detected and moved forward to the cluster level, defined as
macro-level. A different adaptive policy can be applied at
this level, such as admission control, service
differentiation, or adjustment of the cluster configuration

integrating new resources or server nodes. The last strategy
is the one enforced by the macro-level management [17].

5. Related Works

Performance analysis and configuration tuning have been
generally investigated in the context of web servers, which
have less complex interactions than application servers. An
example is the work done in [18] that describes the on-line
optimization of an Apache web server setting the optimal
value of a single parameter, at different loads.

Performance tuning of application servers is attracting
increasing attention now; so far two approaches have been
followed.

In an empirical approach, performance analysis is led by
a series of tests that identify bottleneck and system
behavior with different configuration setting or usage
patterns.

This is the case for [4], in which tests are driven using a
simple methodology to explore the configuration space,
and [6], in which several sampling and search algorithms
are studied for finding the best configuration setting with a
small numbers of test runs.

These works highlight significant correlations among the
parameters to tune and present best effort algorithms that
can be used to increase the efficiency in selecting the
configuration parameters. However they do not provide a
solution for online optimization of the application server
performance.

On the other side, the experimental evaluation has been
used to validate the correctness of an analytical approach.
The analytical foundations in designing system model are
provided by mathematical techniques such as Queuing
Network (QN) modeling, like in [14] and [15], or Control
Theory, like in [16].

In [14] the authors use QN modeling to analyze the
performance of an e-Business site and determine the
tuning of some configuration parameters for adapting the
e-Business site to the load. In [15] there is described a
methodology to determine the optimal concurrency level
of an application server. A simple benchmarking
application is used to derive a QN model of the server,
which is strictly related to the design pattern of the running
application as well as the application server
implementation.

Another method that can be applied is the Feedback
Control Theory, as it is used in [16]. The authors build an
analytical model of an Apache web server in order to
enforce policies even in the presence of interactions
between the controls.

The work presented here involves building a general
purpose monitoring and control sub-system for online

control. It is in conjunction with the empirical approach.
The information acquired off-line is employed to decide
the best configuration setting in case of load variations,
when the e-business application is running and SLAs are
regulating the client-server interactions. In the worst case
here, if adaptation is not effective, the violation warning is
moved to the macro level, where the configuration of the
e-Business site cluster is managed.

6. Concluding Remarks

In this paper we addressed the problem of controlling the
QoS of modern e-Business sites.

We note that technologies behind e-Business solutions,
which are based on component-oriented architectures,
exhibit an inherent complexity that can be hard to quantify,
even in simple models. Services such as caching, pooling,
replication, clustering or JVM optimizations, provided by
the application server, contribute to an improved, but, at
the same time, highly unpredictable runtime environment.
The search for performance improvements of the
underlying middleware platform, under variable load
conditions, leads to increased complexity.

The solution presented in this work is based on a
monitoring component, which at runtime extracts
performance data such as method execution time of the e-
Business application, and a controller component that
periodically compares the actual performance data with the
expected ones. If any violation is detected, the system can
improve its performance with an automatic fine-tuning of
the application server, choosing the best configuration to
apply among a set of adequate configurations selected by a
testing-phase. Besides, there is the possibility of an
escalation of the violation warning, till to the cluster level,
where the control of the overall e-Business site cluster is
managed by a Macro Resource Manager component,
which can apply a different adaptation policy.

7. Acknowledgements

This work has been supported in part by the European
Union funded project TAPAS: Trusted and QoS Aware
provision of Application Services, EU Project IST-2001-
34069.

8. References

[1] Molina-Jimenez, C., Shrivastava, S., Crowcroft, J. and
Gevros P. “On the Monitoring of Contractual Service Level
Agreements” IEEE International Workshop on Electronic
Contracting (WEC), July 2004, San Diego, CA,

[2] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, W.
Zwaenepoel “A Comparison of Software Architectures for E-
business Applications”. Technical Report TR02-389, Rice
University, 2001.
[3] I. Gorton et al., “Middleware technology Evaluation
Report” CSIRO Technical Report, 2002.
www.cmis.csiro.au/adsat/mte.htm
[4] Raghavachari, M., Reimer, D. and Johnson, R. D. “The
Deployer’s Problem: Configuring Application Servers for
Performance and Reliability”, ICSE 2003, Portland, OR, 2003.
[5] E. Cecchet, J. Marguerite,W. Zwaenepoel, “Performance
and scalability of EJB applications”, Oopsla 2002, Seattle,
November 2002.
[6] B. Xi, Z. Liu, M. Raghavachari, C. Xia and L. Zhang, “A
Smart Hill-Climbing Algorithm for Application Server
Configuration” In Proceedings International WWW Conference,
New York, 2004.
[7] E.Ort, “Virtual Machine Performance”, Java Sun Technical
Articles, February 2001
http://java.sun.com/developer/technicalArticles/Programming/JV
MPerf/
[8] Sun Microsystem, “Java 2 Platform Enterprise Edition v
1.4”, November 2004
[9] http://www.jboss.org/
[10] Sun Microsystems, “Java Management Extensions.
Instrumentation and Agent Specification v1.1”, 2002.
http://java.sun.com/jmx/
[11] M. Fleury, F. Reverbel, “The JBoss Extensible Server”,
ACM/IFIP/USENIX International Middleware Conference, Rio
de Janeiro, 2003.
[12] J.Hellerstein, “Automated Tuning Systems: Beyond
Decision Support”, in Proceedings of Computer Measurement
Group, Orlando, Florida 1997.
[13] Sun Microsystems, “The ECperf 1.0 Benchmark.
Specification”, June 2001. http://java.sun.com/j2ee/ecperf/
[14] [MBD01] D. A. Menasce, D. Barbara, R. Dodge,
“Preserving QoS of e-commerce sites through self-tuning: a
performance model approach”, in Proceedings of the 3rd ACM
conference on Electronic Commerce, Florida, 2001.
[15] Y. Liu, S. Chen, I. Gorton, A. Fekete, “A methodology for
predicting the performance of component based systems”, Poster
session of ACM ICSE, Edinburgh, May 2004.
[16] N. Gandhi, J. Hellerstein, S. Parekh, D. Tilbury and Y.
Diao, “MIMO Control of an Apache Web Server: Modeling and
Controller Design”, Proceedings of American Control
Conference, May 2002.
[17] TAPAS Deliverable report D7, “TAPAS Architecture: QoS
Enabled Application Servers”, March 2003,
http://www.newcastle.research.ec.org/tapas/index.html
[18] Liu, X., Sha, L., Diao, Y., Froehlich, S., Hellerstein, J. L.
and Parekh, S. “Online Response Time Optimization of Apache
Web Server”. IWQoS 2003.

