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Abstract  

Controlling Quality of Service (QoS) offered by 
application servers involves selecting appropriate 
configuration and parameter tuning that would match the 
application level load. This is a challenging problem, since 
application servers have many parameters at different 
levels that often influence the QoS in complex ways. This 
paper presents an empirical approach to keep the QoS 
offered close to the level specified by the hosted 
applications, using on-line configuration tuning. Based on 
this approach, an automated tuning system is currently 
under development to monitor and adapt the application 
server performance under variable load conditions. 

 

1. Introduction 

An e-Business site should provide specific services to its 
customers with agreed QoS attributes such as end-to-end 
response time, site response time, throughput in 
requests/sec and so forth. However, the unpredictability of 
the environment complicates the problem of maintaining 
adequate QoS levels. In fact the workload of an e-Business 
site could be highly dynamic and may have load spikes 
that far exceed the average load; besides, there can be 
variations in the resource requirements, due to node 
failures or troubles with the internal software. When 
workload surges appear, performance degrades  
significantly.  

In the work presented here, we have addressed the 
problem of maintaining adequate QoS levels under such 
conditions by implementing an automated tuning system 
based on an adaptive approach. It monitors performance of 
the application server, which can be considered the 
bottleneck of the e-Business platform. In case of variations 
of the load conditions, it applies an adaptive strategy by 
dynamically changing configuration parameters of the 
application server. The values to assign to each parameter 
are based on pre-computed experimental results. A 
benchmark test suite has been used to exercise the system 
and measure its behavior with different configuration 
settings.  

 
 
 
 
 

 
Data has been collected on the most appropriate set of 

configuration parameters under a given loading condition; 
this data is used at runtime to change configuration 
settings as variations in load are detected.  

A major challenge in performance tuning occurs because 
e-business IT activities exhibit an inherent complexity 
which developers find hard to quantify. While component-
based technologies provide flexible infrastructure solutions 
for developing e-Business applications, they also introduce 
a multi-layer structure which admits various architectural 
trade-offs to be made and design patterns be used. 
Consequently, the task of performance tuning becomes 
complex, as the effects of many possible combinations of 
trade-offs need to be understood. 

The problem is exacerbated by the fact that an e-
Business site typically includes a cluster of application 
servers, which are not necessarily homogeneous. For 
tractability, we distinguish two levels of performance 
tuning: a macro-level adaptation that regulates controls at 
the cluster level (e.g., load balancing); and a micro-level 
adaptation that deals with performance tuning at a finer 
granularity of resources internal to an application server 
(e.g., server queues and connection pools). In this paper, 
we focus only on the latter.  

The outline of the rest of this document is as follows. 
Section 2 provides some background on middleware 
technologies used within e-Business sites. Session 3 
explains the main issues on configuration tuning of 
application servers. Section 4 describes the implementation 
of the automated tuning system. Related works are 
presented in section 5. Section 6 concludes the paper.  

2. The E-Business Site 

E-Business sites provide services to their customers 
using middleware technologies to deploy, host and manage 
enterprise applications. At peak loads, these systems are 
susceptible to large volumes of transactions and concurrent 
users. And yet they are expected to maintain the offered 
QoS metrics while scaling appropriately to handle different 
bursts of traffic in a predictable manner. 

 
 
 
 
 
 



   

 

If problems arise in the service provisioning at 
application run time, it is the responsibility of the e-
Business site to adapt the system platform, in order to 
prevent or minimize the possibility of violation of the 
agreement with the customers. The main issue is to design 
a system with confidence that it will perform well enough 
to meet Service Level Agreements, the legally binding 
contract between the e-Business site and the customer [1]. 

 

 
Fig.1: Structure of an e-Business site 

Fig. 1 shows a conventional structure for e-Business 
sites. It is a multi-layered structure, logically divided in 
several tiers. Usually we can expect to have the following: 
Presentation Tier that runs within a web server that hosts a 
number of components based on web technologies such as 
HTML for static contents, or JSP and Servlet for dynamic 
contents; Business Tier that runs within an application 
server and provides for the case of Java component 
middleware (J2EE), EJBs, RMI classes, JDBC pool, and 
their associated business logic; and Data Tier that consists 
of one or more databases and a database server that 
manages data persistence. 

Technologies behind e-Business solutions are the current 
component-oriented architectures that promote the use of 
containers to host component instances, such as J2EE, 
CORBA, COM+/.NET. Using these middleware 
architectures, developers of e-Business applications are 
free from explicitly handling issues such as transactions, 
database interactions, concurrency; all of them handled by 
the application server. 

It has been demonstrated that application servers are 
often the bottleneck of the e-Business site platform [2]. 
The main problem of predicting application server 
performance is not straightforward. The tight coupling of 
application components and component infrastructure 
introduces a high level of complexity in predicting the 
effects of various architectural trade-offs. For instance, it 
has been observed that the same technology with different 
vendors [3], or different classes of e-Business applications 
[4], or even the same application type, but implemented 
using different design patterns [5] perform differently from 
an instance to another. Furthermore some of the 
differences become even more significant as the same test 
case is scaled to run on more application server nodes in a 

clustered platform, in attempt to increase the overall 
application throughput [3]. 

Nevertheless application servers are designed to be 
flexible and application deployers are provided with 
‘knobs’ to tune several components of the application 
server. But in many cases application servers are 
configured using a mixture of rules-of-thumb, intuition and 
trial-and-error approaches [4]. 

The solution we are investigating attempts to find the 
‘best’ configuration settings by monitoring of the 
application server and extracting runtime performance 
characteristics, under experimental conditions with an 
adequate set of benchmarking application. The information 
collected in this way is employed at runtime to adapt the 
system to the variations of the workload conditions, and 
automatically tuning the configuration parameters along 
the lines discovered with testing.     

For our work, we have focused on specific middleware 
architecture, the Java 2 Platform Enterprise Edition (J2EE) 
[8], and, more precisely, on JBoss [9]. 

3. Tuning Configuration Parameters 

Performance of application servers depends heavily on 
appropriate configuration, but to choose the correct 
settings of parameters is a difficult and error-prone task, 
given that application servers may have more than a 
hundred parameters that can be modified and many of 
them may present complex interactions [6].  

An important distinction among the overall setting of 
configuration parameters is that the modifications can be 
statically or dynamically carried out. In the former case, 
parameters are assigned only at server set-up time; in the 
latter case the parameters can be tuned at run-time. In the 
rest of the paper we shall consider only the dynamically 
tuned parameters, since our aim is to provide on-line 
performance tuning, without shutting down the application 
server.  

Generally, the administrator of the server nodes 
manually tunes these parameters to optimize the 
performance, using best-practice guides and profiles. 
There are cases in which the best configuration of the 
server is found to be in conflict with the best practice 
suggestion [4].  

Modification of the configuration can be applied at 
different level of the single node.  

At the process level, the Java Virtual Machine (JVM) 
can be started with the –Xmx <size> option, which sets 
the maximum JVM heap size, that is the maximum amount 
of memory allocated to the JVM in which the application 
server executes [7].  



   

 

At the server level it is possible to specify the group of 
services for the application server start-up, i.e. the 
minimum number of services required to start the server; 
the default J2EE; or the configuration containing all the 
available services, included clustering.  

At the component level, examples include the 
configuration of multiple thread pools, queues, cache size, 
and timeout and retry values. In JBoss, for instance, there 
is the Backlog parameter, which sets the maximum queue 
length for incoming connection requests, so that if a 
connection request arrives when the queue is full, the 
connection is refused; the Database Connection Pool Size 
(DCPS) parameter, which sets the size of the pool of live 
database connections that can be concurrently handled, or 
reused in order to reduce the overhead of opening new 
connections; the Thread Pool Size (TPS) parameter, which 
represents the number of live server threads maintained in 
a pool, accepting requests from the waiting queue and 
handling simultaneous client sessions.  

In particular, TPS is a critical parameter, because it 
dictates the concurrency level at the application server. A 
small number of threads may work well for providing 
good response time, but there is higher probability of 
rejecting client requests, leaving the server under-utilized; 
on the contrary, a high number of concurrent threads 
increases utilization but slows down response time. 

Our experience in tuning this parameter during 
benchmarking tests shows that, at a fixed load, increasing 
TPS leads to an improvement of both response time and 
throughput; but this is true until only a certain value, after 
which the application server saturates. The trade-off is that 
there is a point at which the overhead associated with 
context-switching, i.e. giving the CPU to each of the 
threads in turn, becomes so costly that performance 
dramatically degrades. Therefore it is important to find the 
best setting at a given workload, even applied to more than 
one parameter, which may influence each other.  

Still one could argue that it is sufficient to size the 
system so that it can provide the best resource availability 
for serving the maximum number of requests under peak 
of loads. For instance, it could be possible to set TPS at the 
highest value, even if the load is low. When the workload 
intensity increases, there will already be the maximum 
available number of threads waiting for serving a high 
number of incoming requests.  

It happens instead that balanced configuration setting can 
avoid build up queues of jobs waiting to be served.  

A client request, as shown in figure 2, can encounter 
waiting either at the application server door, waiting to be 
served by a server thread, or at the database server door, 
waiting to write/read data in the database for its 
computations. If the number of threads serving requests is 
too high, the queue at the database increases and the 

database become congested. On the other hand a low 
number of threads can build up queues at the application 
server door, leaving the database under-utilized. 

 

 
Fig.2:  Queues at Different Tiers 

Another important reason for applying configuration 
tuning is that a shared resource is optimally accessed 
without setting the configuration parameter at the highest. 
For example, let’s consider the case of a database shared 
among different application server instances (a cluster). 
Each application server maintains its pool of database 
connections, and the size of the pool is the maximum 
number of connections to the database that can be 
concurrently open. It is worth keeping the number of 
connections at a low level when there is no high workload, 
so that the access on the connection table is faster for the 
overall set of nodes in the cluster.  

As result, it is worth using configuration tuning that can 
support the achievement of the best performance of overall 
system at any time, without leaving resources under-
utilized.  

4. Automated Tuning System 

To monitor and adapt the application server to the 
variation in the workload we have realized an automated 
tuning system, fully integrated on the application server 
platform. We have focused on an open source 
implementation of the J2EE architecture, the JBoss 
application server [9]. However a similar strategy can be 
applied to any other application server technology, the 
only requirement is the presence of server knobs to use for 
automatically tuning the configuration parameters. 

JBoss is an open-ended middleware, in the sense that 
users can extend middleware services by dynamically 
deploying new components into a running server. The 
foundation of JBoss middleware components is the JMX 
specification [10], which provides a lightweight 
environment where components can be dynamically 
loaded and updated, and which makes JBoss manageable. 
JMX provides a common software bus that allows the 
integration of components, such as modules, containers, 
and plugs-in, declared as MBeans services, where the 
MBean is the Java object representing manageable 
resource (any device, application or Java object. On top of 
it, JBoss introduces its own model for the components, 



   

 

centered on the service components, the modules that 
implement every key feature of the J2EE technology.  

As it is suggested in [12], the basic architecture for an 
automated tuning system is made of the target system, 
which is the JBoss application server being managed, and 
two kinds of interfaces with the target system. The first is 
represented by the Monitor component, which provides 
access to performance data. The second is represented by 
the Controller component, which provides access to the 
tuning knobs that control the performance of the target 
system. 

The metrics that we have chosen to control are: server 
Throughput, i.e. the number of requests per second that 
complete execution from the system; and server-side 
Response Time (RT), i.e. the time elapsed since a request 
arrives at the system until it is completely processed and a 
reply is sent back. No network time is included. So, the 
clients of the application server are the effective “proxy-
clients”.  

The Monitor component periodically collects the data on 
server QoS, which are maintained in the Actual QoS 
object. The object is updated by the Invocation Data 
component that detects client method calls to the EJBs of 
the running application, using an interceptor to detect the 
inbound and outbound times.  It exploits the interceptor 
stack of stateless components, in which every call proceeds 
through the stack from first to last, until the target EJB 
component is called. After the EJB has finished with its 
method, the call will unwind through the stack in reverse 
order [11]. 

Whenever a method call is issued on the client-side 
proxy, the RMI call is routed by an Invoker MBean at the 
server side, where is routed through the chain of 
interceptors associated to the container of the target EJB, 
among which there is our monitor interceptor.  

The Controller component has the duty of maintaining 
performance at an acceptable level, defined by Agreed 
QoS. Therefore it periodically compares this Agreed QoS 
with the values of the Actual QoS provided by the 
Monitor. If the evaluation is above a fixed threshold, then 
there is an early warning and the adaptive strategy is 
applied. The adaptation is carried out tuning the 
application server configuration, and directly modifying 
the configuration parameters exposed in the MBean 
interfaces of the manageable resources.  

The new server configuration is selected among a set of 
optimum configurations. This set is originated by an off-
line testing phase that precedes the on-line run of the 
hosted application. During the testing phase, the 
application server performance is measured with a 
benchmarking application; the best configurations at 
different loads are selected. At application run-time, the 

parameters are automatically tuned, without requiring any 
human action.  

Both the Monitor and the Controller components are 
started and managed by the Micro Resource Manager 
MBean.  

These are the components that provide QoS control, the 
shaded ones depicted in Fig.3. At application server 
startup, the MBean server starts the Micro Resource 
Manager MBean, which runs the Monitor and the 
Controller component. The former gets the Actual QoS 
object from the Invocation Data component, which is 
updated by the interceptor. The latter examines the 
acquired values and decides to tune the configuration of 
selected MBeans.  
 

 
Fig.3:  Automated Tuning System 

During the testing phase, the evaluation of the 
performance is carried out with the use of ECperf [13]. It 
is a benchmark application for measuring performance and 
scalability of e-Business systems built by Sun in 
conjunction with J2EE application server vendors. The 
series of simulated events that represent the business 
problem modeled are based on manufacturing, supply 
chain management, and order-inventory, all of them 
requiring the use of many middleware services, which are 
stressed and measured by the benchmark. The workload 
generator is simulated by a multithreaded application that 
spawns several agents to simulate the clients. The activities 
of the agents are related to the chosen injection rate, the 
rate at which business transactions requests are sent to the 
server. 

The result of one of the tests that has been conducted is 
shown in the graph in Fig.4. The graph represents the 
variation of RT during the steady state of an ECperf run, at 
a constant injection rate.  

Throughout the simulation time, the values of the 
configuration parameter TPS and DCPS were increased, 



   

 

from the default values, in conf_1, to five times these 
values, in conf_4.   

The RT obtained improves at each configuration change. 
The conf_1 shows a quite uneven RT plot since many of 
the ECperf requests to the database were rejected, because 
of the limited number of database connections. The high 
error rate decreased with the increment of DCPS. The best 
configuration shown in this example is the conf_4, which 
has as side effect a higher consume of node and database 
resources, which should be taken in account in case of 
shared resources. 

 
Fig.4:  ECperf test: Application Server RT  

Adaptation at run time can start before the violation point 
of the QoS metric is reached. For instance, it may occur 
that the QoS metric is violated for a short time, which 
denotes that the violation point is not reached yet and that 
configuration tuning can be effective.  

The described adaptation policy is operative at node-
level and it is defined as micro-level management. We 
introduced this term for tractability, to make a distinction 
between a single node and a collection of application 
server nodes.  

It is worth considering that, to achieve application server 
scalability in the enterprise environment, the client 
requests can be distributed among multiple cooperating 
server node of a cluster. Therefore, in case high workload 
burst, also due to node failures, for instance the crash of 
some of the nodes in a cluster may overload the others, the 
violation of the agreement, as stated in the Agreed QoS, is 
detected and moved forward to the cluster level, defined as 
macro-level. A different adaptive policy can be applied at 
this level, such as admission control, service 
differentiation, or adjustment of the cluster configuration 

integrating new resources or server nodes. The last strategy 
is the one enforced by the macro-level management [17].          

5. Related Works 

Performance analysis and configuration tuning have been 
generally investigated in the context of web servers, which 
have less complex interactions than application servers. An 
example is the work done in [18] that describes the on-line 
optimization of an Apache web server setting the optimal 
value of a single parameter, at different loads. 

Performance tuning of application servers is attracting 
increasing attention now; so far two approaches have been 
followed.  

In an empirical approach, performance analysis is led by 
a series of tests that identify bottleneck and system 
behavior with different configuration setting or usage 
patterns. 

This is the case for [4], in which tests are driven using a 
simple methodology to explore the configuration space, 
and [6], in which several sampling and search algorithms 
are studied for finding the best configuration setting with a 
small numbers of test runs.   

These works highlight significant correlations among the 
parameters to tune and present best effort algorithms that 
can be used to increase the efficiency in selecting the 
configuration parameters. However they do not provide a 
solution for online optimization of the application server 
performance.    

On the other side, the experimental evaluation has been 
used to validate the correctness of an analytical approach. 
The analytical foundations in designing system model are 
provided by mathematical techniques such as Queuing 
Network (QN) modeling, like in [14] and [15], or Control 
Theory, like in [16].  

In [14] the authors use QN modeling to analyze the 
performance of an e-Business site and determine the 
tuning of some configuration parameters for adapting the 
e-Business site to the load. In [15] there is described a 
methodology to determine the optimal concurrency level 
of an application server. A simple benchmarking 
application is used to derive a QN model of the server, 
which is strictly related to the design pattern of the running 
application as well as the application server 
implementation.  

Another method that can be applied is the Feedback 
Control Theory, as it is used in [16]. The authors build an 
analytical model of an Apache web server in order to 
enforce policies even in the presence of interactions 
between the controls.  

The work presented here involves building a general 
purpose monitoring and control sub-system for online 



   

 

control. It is in conjunction with the empirical approach. 
The information acquired off-line is employed to decide 
the best configuration setting in case of load variations, 
when the e-business application is running and SLAs are 
regulating the client-server interactions. In the worst case 
here, if adaptation is not effective, the violation warning is 
moved to the macro level, where the configuration of the 
e-Business site cluster is managed. 

6. Concluding Remarks 

In this paper we addressed the problem of controlling the 
QoS of modern e-Business sites.  

We note that technologies behind e-Business solutions, 
which are based on component-oriented architectures, 
exhibit an inherent complexity that can be hard to quantify, 
even in simple models. Services such as caching, pooling, 
replication, clustering or JVM optimizations, provided by 
the application server, contribute to an improved, but, at 
the same time, highly unpredictable runtime environment. 
The search for performance improvements of the 
underlying middleware platform, under variable load 
conditions, leads to increased complexity. 

The solution presented in this work is based on a 
monitoring component, which at runtime extracts 
performance data such as method execution time of the e-
Business application, and a controller component that 
periodically compares the actual performance data with the 
expected ones. If any violation is detected, the system can 
improve its performance with an automatic fine-tuning of 
the application server, choosing the best configuration to 
apply among a set of adequate configurations selected by a 
testing-phase. Besides, there is the possibility of an 
escalation of the violation warning, till to the cluster level, 
where the control of the overall e-Business site cluster is 
managed by a Macro Resource Manager component, 
which can apply a different adaptation policy. 
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