Appendix
Realistic and Tractable Modeling of Multi-tiered
E-business Service Provisioning

G. Ferrarif, P. Ezhilchelvan! and M. Littlef
School of Computing Science, University of Newcastle upon Tyne, UK
f g y y
TArjuna Technologies Ltd., Newcastle upon Tyne, UK

March 11, 2005

Abstract

This appendix models the activities within an E-business site by
representing them in an abstract yet realistic manner and also by pos-
tulating a set of rules which govern the interaction between them. The
objective is to be able to derive an analytical model that is accurate in
representing site operations and also analytically tractable. The Ana-
lytical model can then be used for controlling the Quality of Service
(QoS) offered by sites of commonly encountered architectures. This
will lead to the site administrators to dynamically selecting appropri-
ate configuration parameters that would match the user’s SLAs.

1 Introduction

E-business sites provide specific services to their customers with agreed Qo-
ality of Service (QoS) attributes such as end-to-end response time, site
response time, throughput in requests/sec and so forth. At peak loads,
these systems are susceptible to large volumes of transactions and concur-
rent users. And yet they are expected to maintain the offered QoS metrics
while scaling appropriately to handle different bursts of traffic in a predict-
able manner.

In this appendix we introduce a model that represents the activities
within an E-business site in an abstract yet realistic manner and also postu-
lates a set of rules which govern the interaction between them. The objective
is to be able to derive an analytical model that provides a trade-off between
the accuracy in representing site operations and computational tractability.

The model can then be used for estimating and controlling the QoS
offered by sites of commonly encountered architectures. This will in turn
give support to the site administrators for dynamically selecting appropriate

configuration and parameter tuning that would match the application level
load and, at the same time, meet the agreed QoS.

The appendix is organized as follows. Next section describes the common
E-business site architecture. The following section highlights the activity
occurring on the tiers and the tier interactions. Finally, we present the
model representing the E-business site core that is accurate and analytically
tractable. In the last section some related works are reported.

2 E-business Site Architecture

An E-business site is conventionally structured into logical components called
tiers. (See Fig.1.), a tier comprises one or more servers capable of running
a particular set of applications. Usually we ca expect to have the following:

Presentation Tier: the first tier is the front end of the enterprise, and
runs a Web Server (WS, for short) which maintains the presentation
logic of the application in the form of static read-only HTML pages.
It receives the client requests coming from the outside network and
passes them on to be processed at the lower tier.

Business Tier: It is responsible for business-specific computations. The
Application Server (AS) within it maintains java objects and asso-
ciated business logic and is therefore capable of dealing with more
complex, dynamic queries.

Data Tier: This tier is represented by databases (DB) which maintain the
persistence data. It is usually physically separated by the other two
tiers in order to protect sensitive data by being accessed by unauthor-
ized users. The users cannot directly connect to this tier, but only
through the front-end ones.

Sarvist I EJBE

JUYM JUM

e, SR IS

e o HTTH web _rwi| App |JoEc| DB
i L 7" server|* Server ["| Server

Presentation Business Data
Tier Tier Tier

Figure 1: Structure of an E-business site

Note that some authors, such as [1], additionally define a Client Tier
containing all potential clients accessing the site using the Internet. Very
little computation is done at the Client Tier, other than a client either
composing a request or ’thinking’ over a response received and possibly
submitting a subsequent one after some ’'think-time’. We however focus
here on those tiers that make up the site.

2.1 Tier Implementation Alternatives

For reasons of scalability, responsiveness and availability, a tier within an
E-business site is implemented by a cluster of server nodes. A cluster is a lo-
gical group of nodes running Web applications simultaneously and appearing
as a single server to the world [2]. Load balancers are used to distribute the
load between the cluster nodes by redirecting web traffic to an appropriate
cluster member.

Tier-Cluster mapping. E-business sites can differ by the way the tiers
mapped to the clusters that implement them. In a single-tier clustering, all
three tiers are implemented by servers of a single cluster. A load balancer,
placed in front of the Presentation Tier, distributes requests, hence the
processing load, evenly to all servers in the cluster. A multi-tier clustering
extends the logical separation between tiers into physical separation: every
tier runs on a distinct cluster, with a load balancer at each tier. If the tier
functionality is replicable on-demand, the number of servers within a cluster,
and thus the provisioned tier capacity, can be varied dynamically.

DB Replication. With regard to the Data Tier, traditionally database
servers have employed a shared-nothing architecture that does not support
replication. However, some databases use the approach shared-everything,
but the complexity of its distributed architecture is shielded by providing a
transparent view of a single database image to external applications, even
if it is composed of two or more servers|3].

Technologies. E-business sites are developed using the component-oriented
technologies that promote the use of containers to host component instances,
such as J2EE, CORBA, COM+/.NET. Using these middleware technolo-
gies, developers of E-business applications are free from explicitly handling
issues such as transactions, database interactions and concurrency, which
are handled instead by the Business Tier, the one providing the business
logic.

Selection of the architecture or the technology for E-business site imple-
mentation largely depends upon usage pattern and the type of the applica-
tion.

3 Tier Operations and Interactions

A client on the Internet sends a request to the E-business site using, for
example, a browser and thus connecting to the site web pages.

The request is always routed to the Presentation Tier, where a WS in-
stance, or a thread, serves the request and generates either a static or a
dynamic content response. In the latter case, the Business Tier is contacted
to execute a program containing the necessary business logic. The interac-
tion is in the form of a blocking call being made to an AS thread, thus the
WS thread awaits until the AS thread returns a response.

The AS thread, on its behalf, may have all the data necessary for the
computation in the local cache. In that case it swiftly returns its response
to the WS. If this is not the case, the data are retrieved from the database
issuing one or more queries. Here again the AS thread is blocked while
awaiting the DB thread to serve the request. As a call returns, the caller
may do further processing; at the end the Presentation Tier synthesizes the
response that is returned to the client.

In the simplest case each request is processed exactly once by the tier
and possibly it is directly returned to the caller; otherwise it is forwarded
to the tier below for further processing. More complex processing at the
tiers is also possible, in such scenarios, each request can visit a tier multiple
times.

These interactions between the tiers are highlighted in Fig.2.

Completed
request VWeh

Server @ ngv%r @ Server @
threads threads threads
@ @ @

k.
.

Client

request @ @ @

[]

Presentation Business Data
Tier Tier Tier

Figure 2: Tier interactions in the E-business site

3.1 Example: a J2EE Application

Let’s focus on a commonly used middleware architecture, the Java 2 Plat-
form Enterprise Edition (J2EE)[4], and consider the case of a specific E-
business application, an auction.

An auction application implements the functionalities of an auction site,

such as selling items, browsing and bidding. Selling and bid operations are
usually restricted to the registered users whose credit data have been stored
on the site database.

In a typical request pattern for a bid operation, the client sends a HTTP
request to place a bid on a given item. A Java Server Page (JSP) or a
servlet at the Presentation Tier processes the request; this triggers a series of
invocations at the Enterprise Java Beans (EJBs) [5] deployed in the Business
Tier. EJBs are the components that implement the application business
logic. They are executed in the EJB containers, which provide a set of
ready-to-use services including security, object persistence and transactions.

There are two types of transactions possible. Local transactions are those
that run purely in the scope of the database and commit or rollback within a
single database interaction. Global transactions are those that are controlled
within the application server and may encompass other application servers
and databases. A Local transaction that is used within a Global transaction
is automatically subordinate to the Global transaction, i.e., it cannot commit
or roll back independently.

In order to display information on an item, the EJBs retrieve the data
from the DB, if they are not already cached; before registering the new bid
placed, it may also check the registration status of the bidder and her credit
requirements. The EJB contacts the database using the JDBC service[6] of
the container, which provides a connection pooling mechanism to facilitate
connection reuse across requests. Then data is returned to the EJB that
elaborates the response.

There are operations that require more than one access to the database.
For instance, placing the winning bid entails to check of client’s credit details,
to finalize the purchase, to close the auction notifying the other bidders. All
these are SQL operations at the database, to search, read or write data on
the database tables. Some of the accesses, such as the final purchase, can
be performed using a transactional database access: the database checks for
conflicts as part of acquiring a write lock, and, if there are conflicts, i.e. read
or write locks, then it won’t get the lock.

In case lock conflicts occur on the database, the transaction being at-
tempted is automatically rolled back and an exception will be throw to the
application. Another possible implementation is to block the thread when
a conflict is detected, until the current locks are released, due to commit or
roll back of the other transactions. The behavior after a transaction failure
depends on the type of implementation: in the Container Managed Per-
sistence (CMP) the transaction is controlled by the AS, which immediately
aborts the transaction; on the contrary, in the Bean Managed Persistence
(BMP) the bean controls the transaction, handling the returned exception,
thus the effect of a failure can be other than an error response, e.g. a retry.

The final computation of the EJB is transmitted to the calling JSP page
that synthesizes the HTML response sent to the client, and even contacts

the other bidders to declare the winner of the auction.
The given example points out the specifics of the three tiers:

- Specifics of the Presentation Tier: the only task of the Presentation
Tier is to handle HTTP requests, contact the business components
and eventually generate HTML pages. In [10], the authors stated that
the amount of work performed by the front-end servers, e.g. the WSs,
is low enough that over-provisioning is a cheap solution to meet QoS
requirements.

- Specifics of the Business Tier: this tier implements the business logic
using the container components that manage the creation and execu-
tion of the EJBs and handle issues such as EJBs lifecycle, security,
transactions, database interactions, concurrency control, messaging,
naming and management support. The AS controls the behavior of
the EJBs, their concurrency, and their caching, as well as the inter-
actions of the EJBs with the data sources. The AS is connected to a
back-end DB where enterprise data are persisted [7].

- Specifics of the Data Tier: the database system maintains the persist-
ent data, and it executes the SQL queries as it is required by the EJBs.
The complexity of this tier is usually hidden from the E-business ap-
plication, infact the issues such as security, database open connections
and database transactions are services managed by the container com-
ponents.

It is worth noticing that the type of workload for E-business traffic is
basically different from the general web traffic. The main differences lie in:

- presence of high level of online transaction processing activity
- large proportion of dynamic requests

- great number of requests in secure mode.

which trigger higher response times at this tier, caused by increased com-
putation and communication times combined with the time spent to access
the database.

AS reduces the burden on the DB by not requiring the DB to directly
manage session information, and it allows more complicated session data
than is practical to pass with every web request. It provides communication
with both back-end DB and front-ent web clients in addition to providing
a framework to connect application specific ”business rule” that govern the
interaction between the two[8].

It is possible to improve DB ability to meet its imposed QoS require-
ments. Since there are methods to maximize profits in the Presentation and

in the Data Tiers, an E-business site profit depends on how well the AS
resources are used to serve requests. If not configured properly, a customer
can suffer numerous service misses, and it is responsibility of the E-business
site to prevent or minimize the possibility of violation of the agreement
with its customers. Then it is significant to be able to predict and improve
performance of the Business Tier [9].

Therefore, the model we present below will be primarily AS-centric, fo-
cusing on AS operations and AS-DB interactions.

4 The Model

4.1 Preliminaries and Assumptions

The model is expressed using two primitive data structures: threads and
queues. The former process the client requests and each tier is modeled as
a collection of threads of distinct type. The queues hold those requests that
are awaiting to be processed by a thread.

A thread is in the active state while it is processing a request; as a part
of processing, it may make a ’blocking’ call to another thread and enter the
blocked state. When the call returns, the caller thread re-enters the active
state. Finally, a thread is in the available state when it is neither active nor
blocked. When a request arrives at a tier, it is either handed to an available
thread (if any) of that tier which subsequently becomes active, or kept in
a queue until a thread becomes available to get active on it. A queue can
thus be either empty or non-empty.

We assume that the threads are reliable, they complete processing of any
request in some finite time, and a remote call always returns with a response
that can be normal or exceptional. Thus, threads cannot remain forever in
the active state over a given request and in the blocked state over a given
call.

We consider a special class of queues, called the Timed Queues, char-
acterized as follows. If an entry in a timed queue is not dequeued by a
thread within A seconds, it is deleted and the thread that enqueued the
deleted entry receives an exceptional response. Thus, a timed queue models
a request waiting on a timeout for a resource to become available and an
available resource being allocated to a waiting request in the FIFO manner.
We note here that the notion of queues with reneging can be used to model
and analyze the behavior of requests in timed queues.

A queue, timed or otherwise, is assumed never to become full, and an
incoming request is always enqueued. The rationale for this assumption is
two-fold.

1. We assume that an admission control policy is operative for requests
entering the business site, and that an aspect of this policy is to admit

requests only if the queue in the Presentation Tier is not full.

2. Since a remote call is blocking in nature, the number of requests await-
ing to be processed in the second or the third tier cannot exceed the
number of threads in the previous tier which is finite and often known.
A careful provisioning of buffer space avoids queues at Business and
Data Tiers from becoming full.

For the reasons stated in the previous section, it is the performance of
the Business and Data Tiers which crucially influence the site performance.
So, the System Model is concerned only with these two tiers; the clients
accessing these tiers are represented by prozy clients (typically the servlets
of the Presentation Tier) which provide dynamic web pages to actual clients.

4.2 Description

We model the Business and Data Tiers as sets of M and N threads, respect-
ively. Each tier is associated with a queue that holds the requests while no
thread is available within the tier. The queue of the Data Tier is a timed
one - modeling the fact that waiting for a DB thread is on a timeout. The
model is depicted in Fig.3.

Leave with n Leave with 0 Commit after the nm
Non-Trans. DB access Trans. access
accesses (and n-1 Non-Trans.

L b accesses) 4

”
Incoming v @ @
Request @ Timed Queue(s) C
A—» - Y
; : ForDB | | : B
! | access— ¥ - '
@ e
I I i I
: ! :
! T i — !
| | |
¥ v ¥
Admission Timeout Abort after the nm
Control Policy Trans. access

(and n-7 Non-Trans.
accesses)

Figure 3: AS model

The Business Tier threads process the requests at the average service
rate p requests per second, if no (blocking) call were to be made to the
Data Tier during processing. A request however requires a business thread
to make an average of n > 1 calls to the Data Tier. After each call is made,

the Business Tier thread is blocked. A call is queued in the timed queue
and if it is not pick-up be an available thread within seconds, the business
thread receives an exception and returns to 'available’ state.

With probability p, the nth call can be a transactional one and, if so,
processing of that call terminates with either a commit or an abort result.
The processing of a non-transactional call is similar, but is less time con-
suming. Infact a transactional call may take longer (at least 10 times) to
be processed compared to a non-transactional one. So, two service rates are
defined for Data Tier threads: v (non-transactional) and o (transactional).

The pattern of a successful request is described as following.

The request joins the Business Tier queue and awaits until it gets served
by one of the M threads of this tier. In serving the request, the thread may
need to get, or read, some stored data. There are two cases: all the data are
in the local cach; or the data need to be retrieved from the database. In the
former case, there is no database access: the computation may finish at this
point, a response is sent back and the AS thread is released. In the latter
case, the AS thread awaits to get an open connection to the database, the
AS thread holds and a thread at the Data Tier serves the request, which is
either a read or a write operation. The result is returned to the AS thread
and the DB thread is released.

In accessing the Data Tier, there are again two cases: the read or write
operation at the database requires a simple function; or the operation is a
write operation that requires a transactional call. In the former case the
Data Tier thread quickly returns the data to the Business Tier, which may
finish here and send the response back. Besides, it may require some further
accesses to the Data Tier then it has to compete again for the database
connection. In the latter case, the transactional call is the last write oper-
ation of the given request, before the response is successfully completed by
the Business Tier. Thus the database table are upgraded and the Data Tier
thread is released. The AS thread performs the final computation and sends
the response back; now it is available to pick another request up from the
waiting queue.

4.3 Related Work

The modeling of E-business site operations are generally carried out in the
context of performance modeling and QoS control (e.g., [15], [16], [17], [18],
[19], [20], [21], and [22]). Of these, we specifically focus on the model aspects
(not the analytical aspects) of [15] and [16] since they, like TAPAS, are
concerned with applications hosted by component-based middleware.

The authors of [15] simplify the modeling by considering only a single
tier and expressing the whole system as a composition of multiple instances
of the single-tier model. The main difference between our model and this
one is in the accuracy of the model. Since the three tiers are described in the

same manner, the overall model is made of a composition of three identical
tiers. Moreover, their model ignores the careful provisioning that can be
done to avoid overflowing of queues by knowing the number of threads in
the previous tiers (see section 4.1); instead we have noticed that the number
of requests awaiting to be processed in the second or the third tier cannot
exceed the number of threads in the previous tier.

Finally, we have introduced a timed queue in front of the Data Tier,
where requests are dropped in case of timeout, on the contrary [15] uses a
queue of finite size which can lose requests when full.

The main purpose of [16] is to show that the performance can be pre-
dicted by deriving accurate models from the system design, when the latter
is expressed formally. The authors have chosen the EJB architecture for
demonstrating their claim. Since the design is assumed to have been ex-
pressed in detail, they work with a very detailed knowledge of the deployed
application. The resulting model characterizes the operations of service
components and the frequency of each operation, in order to produce a
performance prediction of the system in the form of an equation with per-
formance profile parameters. In a second phase, they deploy their specific
application on the target platform and measure the performance. Finally,
the parameter values describing the performance profile of the platform are
determined solving the model corresponding to the given application, and
used to calculate the required quantitative prediction of performance of that
system.

This model is strictly correlated to the software structure of the ap-
plication. In fact, there is considered a specific implementation of a trade
application, which is used it to derive the parameters of the equations. The
accuracy is high because of the availability of a very detailed knowledge
of the deployed application, particularly in terms of characteristics of the
implemented transactions and number and type of EJBs. Because of the
specific implementation of the application, It does not distinguish between
transactional and non-transactional access: every call to the Data Tier is
a non-transactional access, resulting in a normal response, justified by the
limited number of DB entries considered.

References

[1] A. I. Kistijantoro, G. Morgan, S. K. Shrivastava, M. C.
Little,” Component Replication in Distributed Systems: a Case study
using Enterprise Java Beans”, In Proceedings of the 22nd International
Symposium On Reliable Distributed Systems (SRDS), Florence, Italy
2003

[2] R. Tyagi, 7Enterprise application clustering architecture”,
http://builder.com.com/5100-6387-1045317.html

10

[3]

[13]

B. Zeller, A. Kemper, ”Experience Report: Exploiting Advanced Data-
base Optimization Features for Large-Scale SAP R/3 Installations”. In
Proceedings of the 28th International Conference on Very Large Data
Bases (VLDB 2002), Hong Kong, China, August 2002

Sun Microsystem, Java 2 Platform Enterprise Edition v 1.4,
http://java.sun.com/j2ee/

Sun Microsystem, Enterprise JavaBeans Technology,
http://java.sun.com/products/ejb/

Sun Microsystem, JDBC Technology,
http://java.sun.com/products/jdbc/

M. Raghavachari, D. Reimer, and R. D. Johnson,The Deployers Prob-
lem: Configuring Application Servers for Performance and Reliability,
ICSE 2003, Portland, OR, 2003

M. Karlsson, K. Moore, E. Hagersten, and D. Wood, ”Memory char-
acterization of the ECperf benchmark”, In Proc. of the 2nd Annual
Workshop on Memory Performance Issues (WMPI 2002), held in con-
junction with the 29th International Symposium on Computer Archi-
tecture (ISCA29), Anchorage, Alaska, May 2002

U. Vallamsetty, K. Kant, P. Mohapatra , ”Characterization of E-
Commerce Traffic”, Proceedings of the Fourth IEEE International

Workshop on Advanced Issues of E-Commerce and Web-Based Inform-
ation Systems (WECWIS’02), p.137, June 26-28, 2002

D. Villela, P. Pradhan, and D. Rubenstein - ”Provisioning Servers in
the Application Tier for E-Commerce Systems”, Proc. of IWQoS’04,
Montreal, Canada, June 2004

I. Gorton et al., Middleware technology Evaluation Report CSIRO
Technical Report, 2002. www.cmis.csiro.au/adsat/mte.htm

E. Cecchet, J. Marguerite, W. Zwaenepoel, Performance and scalab-
ility of EJB applications, 17th ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications (Oopsla 2002),
Seattle, November 2002

D. Krishnamurthy and J. Rolia, ”Predicting The QoS of an Electronic
Commerce Server: Those Mean Percentiles”. In Proceedings of the

Workshop on Internet Server Performance, Madison, Wisconsin, June
1998

B. Xi, Z. Liu, M. Raghavachari, C. Xia and L. Zhang, A Smart Hill-
Climbing Algorithm for Application Server Configuration. In Proceed-
ings International WWW Conference, New York, 2004

11

[15]

D. A. Menasce, D. Barbara, R. Dodge, ” Preserving QoS of e-commerce
sites through self-tuning: a performance model approach”. In Proceed-
ings of the 3rd ACM conference on Electronic Commerce, Florida, 2001

Y. Liu, A. Fekete and I. Gorton, ”"Design Level Performance Modeling
of Component-based Applications”, Technical Report N.543, School of
Information Technologies, University of Sydney, November 2003

S. Kounev, A. Buchmann, ”Performance Modelling of Distributed E-
Business Applications using Queuing Petri Nets”. In Proc. of the 2003
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS’03), March 2003

Abhinav Kamra, Vishal Misra and Erich Nahum, ”Yaksha: A Self-
Tuning Controller for Managing the Performance of 3-Tiered Web
sites”. In International Workshop on Quality of Service (IWQoS),
Montreal, Canada, June 2004

T. Liu, A.B. Behroozi and S. Kumaran,” A Performance Model for a
BPI Middleware” ,Proc. 4th ACM Conf. Electronic Commerce. ACM.
2003, p. 222-3,June 2003

Paul Reeser, Rema Hariharan, ” Analytic model of Web servers in dis-
tributed environments”. In Proc. of WOSP 2000: Second International
Workshop on Software and Performance, Ottawa, Canada, September
17-20, 2000

Tarek F. Abdelzaher and Chenyang Lu, “Modeling and Performance
Control of Internet Servers,” Invited Paper, 39th IEEE Conference on
Decision and Control, Sydney, Australia, December 2000

N. Gandhi, J. L. Hellerstein, S. S. Parekh, D. Tilbury and Y. Diao,”
MIMO Control of an Apache Web Server: Modeling and Controller
Design”. In Proceedings of American Control Conference, May 2002

12

