
TAPAS
IST-2001-34069

Trusted and QoS-Aware Provision of Application Services

QoS-aware Application Server:
Experimental Evaluation of the Resource Utilization

Report Version: D11 supplement
Report Delivery Date:  31 March, 2005
Classification: Public Circulation
Contract Start Date: 1 April 2002 Duration: 36m
Project Co-ordinator: Newcastle University
Partners: Adesso, Dortmund – Germany; University College London – UK;
University of Bologna – Italy; University of Cambridge – UK

Project funded by the European Community
under the “Information Society
Technology” Programme (1998-2002)



2

QoS-aware Application Server:

Experimental Evaluation of the Resource Utilization

Giorgia Lodi, Fabio Panzieri, Davide Rossi, Elisa Turrini

University of Bologna

Department of Computer Science

Mura A. Zamboni 7

I – 40127 Bologna

{lodig|panzieri|rossi|turrini}@cs.unibo.it

This Report supplements the D11 deliverable Report with additional experimental
results, obtained from the evaluation of our implementation of the Configuration,
Monitoring, and Load Balancing Services described in D11.

This additional evaluation has been carried out in order to i) assess the average
resource utilization entailed by the use of the above mentioned Services, and ii)
compare and contrast it with that of the standard JBoss application server.

For our experimental evaluation we have used the same infrastructure as that
introduced in D11. It consisted of 5 application server instances running in 5
dedicated Linux machines, interconnected by a 1Gb Ethernet LAN. Each machine
was a 2.66Ghz dual Intel Xeon processor, equipped with a 2GB RAM. In the
experiments described below one of these machines was dedicated to implement the
Load Balancing Service; the other four machines were used to host application server
instances that could serve the client requests. The client program was implemented by
the JMeter program running in a G4 processor under Mac OS X; this client machine
was connected to the clustered servers via a 100Mb Ethernet subnet.

The clustered servers were hosting (homogeneously) the digital bookshop
application mentioned in D11. This application provides its clients with such catalog
operations as “choose_book”, “add_book_to_cart”, “remove_book_from_cart”,
“buy_book”, “confirm_order”, which access and manipulate an application database.
As the principal scope of our evaluation was to assess the performance of our
middleware services, only, this application database was replicated and instantiated
locally to each application server, in order to avoid that it become a bottleneck (issues
of database consistency have been ignored, for the scopes of this evaluation).

For the purposes of this evaluation, we have assumed that an ASP, offering
standard JBoss hosting services, adopt a resource overprovision policy in order to
ensure that the application hosting SLA be honoured. We wish to show that, in
contrast with this policy, the resource utilization can vary dynamically as needed,
without causing hosting SLA violations, if JBoss extended with our TAPAS
middleware services is used (i.e., we wish to show that the use of our services
optimizes the use of the clustered resources).
In addition, we have assumed that the hosting SLA prescribe a maximum response
time of 1s per catalog operation, and a 20 request per second (rps) minimal
throughput. Thus, the following two principal warning points were set by the
Configuration Service at cluster configuration time:



3

• a High Load warning point HL = 90%, indicating that when either the response
time or the throughput reach this percentage of their relative SLA values (i.e. their
breaching points), dynamic cluster reconfiguration is required, and a new node is
to be added to the current cluster;

• a Low Load warning point LL = 30%, indicating that when either the response
time or the throughput reach this percentage of their relative SLA values, dynamic
cluster reconfiguration is required, and resources (i.e., nodes) can be released
from the cluster as they are no longer necessary.

Based on the above assumptions, we developed a number of experiments in order to
carry out our evaluation; each experiment consisted of a set of different tests,
summarised below. In the first test, 10 clients were invoking concurrently the entire
sequence of the digital bookshop operations, for 5 minutes. We run this test for 40
minutes, obtaining a sequence of 5 minutes snapshots, such as that  depicted in Figure
1 below.

Average Resource Utilization (10 clients 
repeat BookShop's operations forever) for 5 
minutes. Warning points: HL=90%, LL=30%

0

1

2

3

4

1 41 81 121 161 201 241 281

time (seconds)

N
u

m
b

e
r 

o
f 

u
se

d
 n

o
d

e
s

JBoss standard

JBoss+TAPAS

Figure 1: 1st test

Figure 1 shows that the number of used nodes in the cluster did not change for the
standard JBoss configuration, as no dynamic cluster reconfiguration is provided by it.
Thus, in order to meet the above mentioned SLA, the standard JBoss has to adopt
resource overprovision, and allocate at least (and possibly 3) nodes to the hosted
application for the entire duration of the test. In contrast, the TAPAS extended JBoss
(JBoss+TAPAS, in Figure 1) dynamically uses from 1 to 2 nodes, only, depending on
the load in different time intervals.



4

In the second test, the number of clients was augmented to 30. As in the previous
test, each client invoked the entire sequence of bookshop application operations for 5
minutes. We run this test for 40 minutes, and observed a sequence of 5 minutes
snapshots such as that depicted in Figure 2.

Average Resource Utilization (30 clients that repeat 
the BookShop's operations forever) for 5 minutes. 

Warning points: HL=90%, LL=30%

0

1

2

3

4

1 31 61 91 121 151 181 211 241 271

time (seconds)

N
u

m
b

e
r 

o
f 

u
se

d
 n

o
d

e
s

JBoss standard

JBoss+TAPAS

Figure 2: 2nd test
Figure 2 shows that the standard JBoss configuration, in order to meet the hosting
SLA, must allocate at least 3 (and possibly 4) available nodes, regardless of the actual
load. In contrast, the TAPAS extended JBoss starts with a small number of nodes (i.e.,
1 node), and increases it (up to 3 nodes), as the load increases.

The third test consisted  of 50 clients, each of which invoked the entire sequence
of bookshop operations for 5 minutes. This test run for approximately 40 minutes; a 5
minutes snapshot of this test is illustrated in Figure 3. This Figure shows that the
standard JBoss statically allocates the 4 available clustered nodes, as usual, since the
beginning of the test, even though not all these nodes are always necessary. In
contrast, the TAPAS extended JBoss increases dynamically the number of nodes in
the cluster, as the load increases, and begins to release resources (i.e., nodes) as the
load decreases (i.e., as some of the nodes become unnecessary).

In order to investigate further the effectiveness of this latter feature implemented
by our services (i.e., the release of unnecessary resources, as load decreases), we
carried out the two tests described below. In both these tests, initially 10 clients issued
concurrently the entire sequence of bookshop operations. After a fixed time interval
(i.e., a period of 2’ and 7’, respectively, in each test), the number of clients increased
to 30, and then, after the same period in each test, it increased to 50 (needless to say,
the clients always issued the entire sequence of bookshop operations). Then, the client
load decreases, firstly from 50 to 30 clients; then, from 30 to 10 clients.



5

Average Resource Utilization (50 clients that 
repeat the BookShop's operations forever) for 5 

minutes. Warning points: HL=90%, LL=30%

0

1

2

3

4

1 31 61 91 121 151 181 211 241 271

time (seconds)

N
u

m
b

e
r 

o
f 

u
se

d
 n

o
d

e
s

JBoss standard

JBoss+TAPAS

Figure 3: 3rd test
The results of these tests are shown in the Figures 4 and 5, below; in both these
Figures, the client load distribution is depicted by the bold line. Figure 4 shows a 10’
snapshot of a 90’ test in which the client load varied with a 2’ period. This figure
shows that the standard JBoss allocates all the 4 available nodes, and maintains them
allocated to the hosted application for the entire duration of the test, regardless of the
actual client load. In contrast, the TAPAS extended JBoss dynamically augments the
cluster size, as the client load increases, and dynamically releases clustered nodes, as
the  client load decreases.

Figure 5 shows a 35’ snapshot of a 140’ test in which the client load varied with a
7’ period. It can be seen that the results shown in this Figure are coherent with those
discussed above, and illustrated in Figure 4. Namely, Figure 5 shows that, yet again,
the TAPAS extended JBoss optimizes resource allocation by dynamically adding
resources to the cluster when necessary, and releasing those resources, as they
become unnecessary. In contrast, the standard JBoss  cluster configuration needs
resource overprovision, in order to guarantee that the SLA be honoured.



6

Average Resource Utilization (Warning points, 
HL:90%, LL:30%) 10 minutes

0

1

2

3

4

1 41 81 121 161 201 241 281 321 361 401 441 481 521 561

time (seconds)

N
u

m
b

e
r 

o
f 

u
se

d
 n

o
d

e
s

0

10

20

30

40

50

N
u

m
b

e
r 

o
f 

cl
ie

n
ts

JBoss standard

JBoss+TAPAS

clients

Figure 4: 4th test

Average Resource Utilization (Warning points: 
HL=90%, LL=30%) 35 minutes

0

1

2

3

4

1 201 401 601 801 10011201 14011601 18012001
time (seconds)

N
u

m
b

e
r 

o
f 

u
se

d
 n

o
d

e
s

0

10

20

30

40

50
N

u
m

b
e
r 

o
f 

cl
ie

n
ts

JBoss standard
JBoss+TAPAS
clients

Figure 5:  5th test

In summary, the last two tests above show that the TAPAS middleware uses, on
average, from 2 to 3 nodes, by saving approximately 30% of the available resources,
when compared to the standard JBoss; Figures 6 and 7 illustrate this results.



7

4

2,89

0
0,5

1
1,5

2
2,5

3
3,5

4

N
u

m
b

e
r 

o
f 

u
se

d
 

n
o

d
e
s

1
TAPAS saves approximately a 

28% of used nodes
 compared to the standard 

JBoss

Average used nodes in 4th test, run for an 
hour and a half

JBoss standard

JBoss+TAPAS

Figure 6: Average number of nodes in 4th test

4

3

0

1

2

3

4

N
u

m
b

e
r 

o
f 

u
se

d
 

n
o

d
e
s

1
TAPAS saves approximately a 25% of 
used nodes compared to the standard 

JBoss

Average used nodes in 5th test, run for an hour and 
a half

JBoss+TAPAS
Jboss standard

Figure 7:  Average number of nodes in 5th test
The following experiment aims at evaluating the load balancing mechanisms
implemented by our TAPAS extended JBoss. Specifically, this experiment  assesses
the number of used nodes when round robin load balancing is implemented by our
TAPAS extended JBoss. The result is compared and contrasted with that obtained
when adaptive load balancing is used, instead.



8

This experiment is based on the assumptions, concerning the SLA and the
warning points,  introduced earlier, and has consisted of two tests.  In the first test we
compared and contrasted the round robin load balancing strategy with the adaptive
strategy, by running our 5th test, previously described (i.e., from 10 to 50 clients
accessing the electronic bookshop, with a 7’ period of load variation). The results of
this test, for the round robin policy, are depicted in the earlier Figure 5. Figure 9
below shows the results we have obtained by using our adaptive load balancing policy
(described in D11).

Average Resource Utilization (Adaptive LB, 35 
minutes)

0

1

2

3

4

1 201 401 601 801 1001 1201 1401 1601 1801 2001

time (seconds)

N
u

m
b

e
r 

o
f 

u
se

d
 n

o
d

e
s

0

10

20

30

40

50

N
u

m
b

e
r 

o
f 

cl
ie

n
ts

JBoss standard

JBoss+TAPAS

clients

Figure 9:  Adaptive load balancing results
Figures 5 and 9 show that the average number of used nodes is approximately the
same by applying either strategies. Hence, in order to assess the effectiveness of our
adaptive strategy, we injected additional load in one of the clustered nodes (as our
adaptive load balancing operates based on the actual load of each node).

Thus, we carried out a second test. The test case was the same as that introduced
above, with the exception that, on one of the clustered nodes, additional load was
injected by 5 clients using a computational intensive application running in that
particular node. The resulting average resource utilization is shown in the Figures 10
and 11.

Figure 10 shows that the round robin policy in our TAPAS extended JBoss may
cause poor clustered resource allocation. After allocating all the available resources,
the number of allocated nodes is maintained the same as that used in case of
maximum, even though the load decreases.  We have observed that this occurs
because the response time (not shown in Figure 10) experienced by the clients never
falls below the LL warning point (the 30% of the SLA specified response time).

In contrast, Figure 11 shows that the use of our adaptive strategy, in order to
balance the client load in a cluster of TAPAS extended JBoss nodes, optimises the
allocation of those nodes. In fact we have observed that, using adaptive load



9

balancing, the response time decreased (below the LL threshold) as the load
decreased; hence, resources were released, as no longer necessary.

Average Resource Utilization (round robin policy; 
additional load on one node of the cluster)

0

1

2

3

4

1 146 291 436 581 726 871 1016 1161 1306 1451 1596 1741 1886 2031

time (seconds)

N
u

m
b

e
r 

o
f 

u
se

d
 n

o
d

e
s

0

10

20

30

40

50

N
u

m
b

e
r 

o
f 

cl
ie

n
ts

JBoss standard

JBoss+TAPAS

clients

Figure 10: Round Robin strategy with additional load on a node.

Average Resource Utilization (adaptive policy; 
additional load on one node of the cluster)

0

1

2

3

4

1 234 467 700 933 1166 1399 1632 1865 2098

time (seconds)

N
u

m
b

e
r 

o
f 

u
se

d
 n

o
d

e
s

0

10

20

30

40

50

N
u

m
b

e
r 

o
f 

cl
ie

n
ts

JBoss standard
JBoss+TAPAS
clients

Figure 11: Adaptive strategy with additional load on a node.
The last experiment was carried out in order to assess the effect of the round robin
and the adaptive load balancing strategies on the cluster response time and
throughput. The cluster configuration for this experiment consisted of 3 nodes, only,
implementing our TAPAS extended JBoss; specifically, 2 nodes were serving the
client requests, and a node was used as dedicated load balancer. In addition, we
injected, during the test, the additional load generated by 10 clients accessing the



10

computationally intensive application mentioned earlier in one of the two nodes
serving the client requests.

The results of this experiment are depicted in the Figures 12 and 13. These
Figures show that both the response time and the throughput of our clustered servers
can improve (of 20%, approximately) if adaptive, rather than round robin, load
balancing is used within the cluster.

2752

2287

0

500

1000

1500

2000

2500

3000

R
e
sp

o
n

se
 t

im
e
 i
n

 m
s

response time

JBoss+TAPAS RR vs JBoss+TAPAS Adaptive (additional 
load on one node)

JBoss+TAPAS RR

JBoss+TAPAS Adaptive

Figure 12:  TAPAS Round Robin vs Adaptive: Response Time

14.7

18.8

0

2

4

6

8

10

12

14

16

18

20

T
h

ro
u

g
h

p
u

t 
rp

s

throughput

JBoss+TAPAS RR vs JBoss+TAPAS Adaptive (additional load on one 
node)

JBoss+TAPAS RR
JBoss+TAPAS Adaptive

Figure 13: TAPAS Round Robin vs TAPAS Adaptive: Throughput


