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Chapter 1

Introduction

1.1 This document

This document describes the ‘Method for Service Composition and Analysis’

under development as part of the TAPAS project. It is intended for submission

as deliverable D3.

1.2 The TAPAS project

1.2.1 Vision

The vision of the TAPAS project is to enable the construction of federated dis-

tributed systems with dependable Quality of Service (QoS) and security prop-

erties. In a federated system components are owned and operated by seperate

commercial entities. The quality of a system as a whole depends on the qualities

of its subcomponents, and so organisations must rely on contracts or trust rela-

tionships to ensure that their systems are not degraded by the performance of

a component provided by another organisation. The commercial and technical

context for the TAPAS project is today’s internet.

Distributed applications can potentially make use of a wide variety of in-

ternet services. These include: Internet Service Provision (ISP), permitting

the flow of data between network endpoints, Storage Service Provision (SSP),

providing reliable data management, Application Service Provision (ASP), to

outsource part of the functionality of a system, and hosting provision, to enable

system components to reside at particular network locations and benefit from a

standard execution environments.
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Guaranteeing quality and security properties for a federated application re-

quires guarantees of these properties for all aspects of its deployment. For the

purposes of the work documented here, we have defined a reference model of

distributed system architecture, show in Figure 1.1. This identifies the types

of service and service interaction for which we intend to provide trust and QoS

management.

Underlying
Resources

Application
Tier

Middle Tier

Storage

Container

Application Service

Application

Network

ASAS

App App

Figure 1.1: Reference Model of Distributed System Architecture

Clients of a service are vunerable to the service provider in at least two ways:

Firstly, the client may depend on the capabilities of the service to conduct their

business. If the service is unavailable or is delivered poorly, the client will be

compromised. The client may have invested in the integration of the service, or

the service may be unique, making it impossible to simply change to another

provider. Secondly, the client may pass sensitive data to the service. This data

may be vunerable to abuse by external parties, other clients of the service, or

the service provider itself.

Service providers are also vunerable to the actions of their clients. Quality

attributes such as performance often depend on external factors such as work-

load. If one client overuses the service, its performance might degrade for all

other clients. Also, by permitting access to the service, the service provider

presents additional opportunities for the client to violate the security of the

service, possibly to steal information sensitive to other clients.

The TAPAS project aims to reduce these mutual vunerabilities in order to

ease the construction of federated distributed systems.
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1.2.2 Approach

The approach taken by the TAPAS project is to enable the specification of

service-provision contracts between service providers and their clients, and to

provide architectural support for the provision and monitoring of these services.

Service agreements compel the provider of a service to meet specified levels of

quality and security, mitigating the vunerability of the client to the provider.

They also prevent the client from abusing the service, mitigating the vunerability

of the provider to the client.

Service-provision contracts are legally binding agreements between the client

and provider of a service, and their complete definition is outside the scope of

the TAPAS project. However, those aspects of the agreements pertaining to

the technical characteristics of the service require precise definition. To this

end, a language for Service Level Agreements (SLAs) has been defined, called

SLAng, described in deliverable D2 [27]. Statements in SLAng describe the

responsibilities of providers and clients of an service with respect to a set of

quality parameters. The qualities are predefined in the language to provide

a standard basis for negotiation between clients and providers. The language

is targetted at the services and interactions present in the reference model,

Figure 1.1.

For service agreements to be useful it must be possible to monitor them

in such a way that violations can be detected and unambiguously attributed to

the responsible party. The TAPAS platform, documented in deliverable D7 [12],

will provide architectural support for service monitoring.

In the face of strict constraints on quality and security properties, the de-

velopment and maintenance of services becomes more difficult. The TAPAS

project therefore aims to provide support for the development of secure ser-

vices with managed quality properties by adapting existing middleware and

networking techniques as the basis of the TAPAS platform. These will provide

an implementation framework including support for deployment and adaption

of applications with guaranteed QoS and security properties.

The project also aims to develop a method for service composition and anal-

ysis. This is a methodological component of the project supporting development

and decision-making activities necessary for clients and providers of QoS aware

services. These include: Capacity planning of services; the integration of ser-

vices into federated distributed applications; the matching of required levels of

service to service offerings; and the development of new applications and services

with dependable qualities, using a combination of existing technologies and the

TAPAS platform. The proposed method for service composition and analysis is
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the subject of this document, and is introduced in detail in the next section.

Mutual dependencies exist between the technical and methodological sup-

port for the development of federated applications provided by TAPAS. The

deployment and monitoring facilities provided by the TAPAS platform poten-

tially support stronger guarantees of quality than existing technologies, and

must therefore be incorporated into the model of services supporting notions

of composition and analysis. Throughout this document we highlight oppor-

tunities to incorporate TAPAS platform details into composition and analysis

methods, and additional opportunities for the TAPAS platform to support the

service composition activities identified in the next section.

1.3 Method for Service Composition and Anal-

ysis

This document only deals with QoS aspects of service composition. Trust and

security aspects will be dealt with in deliverable D9.

We assume: That any party wishing to reason about QoS owns, or is devel-

oping, at least one distributed system or service; that the design of that system

is visible to them; that the design may incorporate the TAPAS platform; and

that parts of the design may rely on services provided by external organisations.

The design of external services will not necessarily be available. The method for

service composition and analysis is required to answer the following questions:

1. What will the QoS properties of the system be, given a certain set of

environmental factors, such as workload?

2. How do the QoS properties of the system depend on the assurances given

by the external services that it integrates?

3. How should the system be developed or modified to provide dependable

QoS?

4. If the system is a service, what SLAs can the application support, and for

how many clients?

5. Given that the system depends on a certain level of service from its subser-

vices, what SLAs should be specified for those subservices, or how should

commodity SLAs be chosen?

In this document we outline a method for answering these questions and

discuss how the method integrates with software development and maintenance
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processes.

The method requires that organisations maintain system designs using the

Unified Modelling Language (UML) [44]. These designs serve as the basis for

analysis activities required to answer Questions 1 and 2 above. They potentially

incorporate architectural components from the TAPAS project. The identifica-

tion of these architectural components in the designs guides development by

refinement, addressing Question 3. The designs incorporate information about

SLAng SLAs governing service interactions. The comparison of these SLA terms

with QoS properties identified by analysis or monitoring addresses Question 4.

The comparison of required levels of QoS identified by analysis with offered

SLAs, in combination with the notion of SLA combatibility defined with refer-

ence to the SLAng semantics addresses Question 5.

We employ a number of domain-specific extensions to the UML, to sup-

port the representation of architectural components, QoS properties and SLAng

SLAs. By employing UML as a base language we adopt an industry standard

design notation already widely employed by developers of internet services. We

gain tool support for our method, allowing the production of design and anal-

ysis models. The UML models used provide a single repository for information

relating to service composition and analysis, allowing centralised management

of models and design information.

Throughout this document, application services are used to illustrate the

approach taken. We regard the federation of application services as a prime

objective of TAPAS. Application services are considerably more diverse than

the other services identified in the reference model, and this makes support for

service composition with dependable QoS a significant challenge. We believe

that the modelling approach taken to address this challenge will also be appli-

cable to the composition of services of the other types identified. This will be

demonstrated in future work.

1.3.1 QoS Prediction

A means to predict the QoS properties that a system will exhibit given a partic-

ular configuration and environment is necessary because it may be impossible

or impractical to test the system under the conditions of interest. It may be

difficult or expensive to establish the test conditions, for example generating a

realistic workload for a system intended to service millions of clients. The sys-

tem may not exist as specified, the purpose of the prediction being to evaluate

design decisions before committing resources to implementation.

QoS prediction requires a view of the behaviour of the system, and the QoS
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properties of its components. UML models can provide such a view. Prediction

may also require sophisticated analysis techniques to determine the QoS prop-

erties emerging from the interaction of many components. Previous research

has proposed derivations of analysis models such as stochastic Petri-nets [51]

and layered queuing networks [48] from UML designs. A UML extension, ‘The

Profile for Schedulability, Performance and Time Specification’ (henceforth ‘the

real-time profile) [42] has been standardised to allow modelling of the perfor-

mance properties of systems where resource utilisation and scheduling are the

principle influences on performance. The intent of the real-time profile is to

allow analysis techniques to use model data as input.

Previous work suffered in several respects: Firstly, UML and its extensions

do not have a formally defined semantic, meaning that there can be no strong

proof of the validity of a particular derivation. This is unlikely to change as

it has thus far proved impossible to build a consensus for strong formality for

UML. Secondly, the derivations proposed in the literature are defined using a

number of ad-hoc techniques ranging from graph-grammars to natural language

descriptions. The lack of a standard representation hinders their deployment,

and when deployed the technique becomes coupled to a particular tool. Thirdly,

a completely encapsulated derivation is unlikely to produce successful analyses

every time because of the difficulty in deriving a feasible and valid model for

all designs. This implies that tools are likely to be brittle if they cannot be

adapted.

In Chapter 3 we describe our approach to analysing non-functional prop-

erties of distributed software architectures based on Model Driven Architec-

ture (MDA) technologies [38]. MDA is a development approach based on UML

models, in which business knowledge (Platform Independent Models - PIMs)

is maintained seperately from technical artefacts, such as design models (Plat-

form Specific Models - PSMs) and source code. The successful application of the

MDA approach depends on technologies and tools supporting flexible modelling

of diverse semantic domains (PIMs and PSMs), and relationships and transfor-

mations between them (deployment of PIMs to PSMs). We use the UML profile

mechanism to define classes of analysis models, design models and the mapping

between the two. Profiles are denoted using UML and may be injected into any

conforming tool, reducing tool tie-in. The derivation is visible and modifiable

within a tool, adding flexability. Its colocation with design and analysis models

reduces ambiguity due to the relatively informal semantics of UML.

We provide an example of the method applied, in which queuing network

models are derived from UML designs annotated using the real-time profile. We
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also discuss the derivation of analysis models suitable for other types of QoS

property, such as reliability. Finally, we discuss the way that analysis model

derivations can capture expert modelling knowledge relating to architectural

components identified in designs, for example EJB components, or elements of

the TAPAS architecture. Architectural components are both an advantage and

a disadvantage in performance analysis. They enable more accurate predic-

tions because they are standard and their implementations change infrequently,

making detailed modelling a safe investment of effort. However, they are also

monolithic, so determining their QoS characteristics can be difficult in the first

instance. It should be a goal of the TAPAS platform to provide transparent

QoS characteristics to ease analysis modelling.

1.3.2 SLA representation and reasoning

If internet services are to deliver guaranteed service levels then their behaviour

must be understood in terms of the quantities specified in service level agree-

ments. Consequently there is the need to formally define the meaning of the

SLA language used, in our case SLAng, and to establish the relationship of its

parameters to the results of analysis.

We address this problem as follows: We define a formal semantic for SLAng;

we define a UML extension that allows SLAng contracts and the services to

which they apply to be modelled in UML designs; and we define a UML exten-

sion that allows modelled QoS properties to be related to terms in SLAng. Our

approach is describe in Chapter 4.

Unambiguously defining the meaning of SLAng was a significant challenge.

We use the Unified Modelling Language (UML) to model the language, produc-

ing an abstract syntax. We embed this language model in an object-oriented

model of services, service clients and their behaviour. The presence of SLAs,

instances of the language model, constrains the behaviour of the associated

services and service clients. The constraints are defined formally using the Ob-

ject Constraint Language (OCL), a sub-language of UML with an unambiguous

interpretation, and with accompanying natural language descriptions. The con-

straints define the semantics of the language, and are easily understood in the

context of the service model.

Benefits of the formal semantic include the reduction of ambiguity in the

meaning of the language through the association of a reference model of service

behaviour, and the means to check the semantics to ensure the absence of in-

consistencies and loopholes. The style of semantic definition is user-friendly so

it can serve as a reference for human negotiators. It also provides a formal ba-
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sis for comparisons between SLAs, and an abstract reference model of systems

employing SLAs that can guide implementation and analysis efforts.

The semantic supports the comparison of desired service levels, expressed as

target SLA terms, with offered service levels. A required and an offered SLA

are said to be compatible if the offered SLA permits no behaviours (according

to the service model) that would violate the target SLA. Checking compatibility

between SLAs is a key facility for developers who must choose external services

to meet their requirements.

In order to relate SLAs to the systems they constrain, we employ our se-

mantic model as the basis for a UML extension. This provides the additional

vocabulary to the model of services and SLAs in the same context as more

detailed design information. The UML extension is provided in the form of a

QoS catalogue appropriate to the proposed ‘UML Profile Modelling Quality of

Service and Fault Tolerance Characteristics and Mechanisms’ (henceforth ‘QoS

profile’).

It is also necessary to relate the SLA parameters to QoS properties deter-

mined by analysis. Because analysis profiles such as the real-time profile are

based on a different semantic model to SLAng, it is not possible to conduct

analysis using SLAng properties directly. A possible solution to this is to unify

semantic models. However, this would have the negative effect of coupling

profiles for different purposes to an unnecessarily complex semantic model. For

now, we have chosen to represent QoS characteristics alongside models of SLAng

contracts, and introduced a notation allowing the designer to assert that a QoS

property corresponds an SLA parameter.

1.3.3 Implementing QoS-aware systems

UML is the design language of choice when adopting a Model Driven Architec-

ture (MDA) [38] development strategy. In this methodology models of business

knowledge are maintained seperately from technical models and artifacts, en-

hancing their reusability across multiple platforms. Model transformation is a

key technology in the MDA, used to deploy business knowledge automatically

in new technical domains. Transformations rely on the semantics of both source

and target domains.

We employ domain specific languages to represent architectural components,

both as the starting point for analysis, as discussed in Chapter 3, and as points

of attachment for SLA specifications when using the SLAng catalogue, pre-

sented in Chapter 4. Models including these architectural components are effec-

tively high-level platform-independent models in the MDA terminology, and are
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therefore a suitable starting point for implementation efforts, either driven by

refinement or assisted by model transformation technologies. Such refinements

or transformations will be informed by the rich semantic defined for SLA-aware

services by the SLAng semantic model.

In the future, it may also prove beneficial to provide semantic models directly

describing the TAPAS architecture, and related architectural components such

as EJB containers. Such semantic definitions can serve as reference models

for UML extensions [13, 50]. UML diagrams employing these extensions could

therefore form the basis for more sophisticated deployment transformation re-

specting the platform semantics. We have investigated this approach by defining

a semantic model and UML profile for electronic-service systems with workflow

components. This work demonstrates the feasibility of the approach, suggest-

ing that an application to the TAPAS project would be a useful addition to the

work presented here. We review this work in Chapter 5.

1.3.4 Methodological Implications

The reliance of our method on UML suggests that organisations wishing to

apply it will have to adopt a model-centric development process, such as the

Rational Unified Process [24]. We rely only on standard UML technologies

for our method, but its philosophy is based in MDA concepts. In particular,

if organisations wish to gain additional benefit from the platform independent

models of QoS-aware systems, architectures, services, and SLAs then they will

have to adopt a refinement-based development approach, possibly structuring

their systems along MDA lines.

For organisations employing a development process whose primary artifact

is UML models, the overhead of our analysis approach is not dramatic. Analysis

becomes possible as soon as designs reach an adequate level of detail to permit

analysis models to be derived. The expense of annotating designs with QoS

information is proportional to the effort expended to ensure the accuracy of

that information. ‘Rule of thumb’ assessments of the possible performance of

a design are possible quite cheaply. The derivation of analysis models and the

processing of those models to produce results can and should be automated.

The use of SLAs to mediate service provision is a significant managerial de-

cision. Service provision must be planned to meet capacity and performance

targets. The SLAs themselves must be carefully parameterised. Our semantic

for SLAs, in combination with our approach to analysis provides strong sup-

port for these activities. The manipulation of SLAng SLAs is supported by its

machine-readable syntax and its rigorously defined semantics, which provides a
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reference for negotiation, monitoring, implementation and analysis activities.

1.4 Overview

In Chapter 2 we provide technical background concerning the UML and MDA

development approach supporting the material in subsequent chapters; in Chap-

ter 3 we present our approach to non-functional analysis of UML designs; in

Chapter 5 we present a model and profile for electronic service systems, exem-

plifying a suitable approach for the modelling of service systems; in Chapter 4

we present a formal semantic for the SLAng language and use the semantic

model as the basis for a UML extension for modelling SLAs; in Chapter 6 we

conclude and discuss future directions for this research.
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Chapter 2

Background

2.1 UML

The Unified Modelling Language (UML) is an object-oriented graphical lan-

guage that has found wide applicability in analysis and design for software

engineering. In this document we describe how UML can be used as a basis for

modelling services, their qualities and service level agreements. This modelling

depends on domain-specific extensions to UML delivered using profiles. Pro-

files are a UML extension mechanism whereby the innate notations provided

by the UML can be augmented with labels, called ‘stereotypes’, tagged values

and constraints, which provide semantic refinement, annotations and syntactic

refinement respectively.

UML is based on a conceptual architecture that is divided into four meta-

modelling layers as shown in Figure 2.1. The lowest level is the data layer (M0),

in which objects such as data-patterns in computer memory and other real-world

phenomena including people and things are supposed to reside. The elements

in the lowest level are classified by types in the UML models that analysts and

designers produce, which hence reside at the next meta-level (M1). UML model

elements are, in turn, objects of classes in the UML meta-model (M2). Attached

to these meta-classes are semantic descriptions and syntactic constraints that

control the meaning and applicability of the UML. The meta-model at level M2

is self-describing, so can also be regarded as residing in level M3 (and plausibly

all higher levels).

Profiles then, are a means of refining classes, semantics and syntactic con-

straints at the M2 level. Confusingly, profiles are defined at the M1 level, so that

they can be denoted using UML and deployed by including them with any UML
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<<profile>>
UMLExtension

<<model>>
MyModel

UML meta-model Virtual meta-
classes

UML meta-model

M0: Real world

M1: Models

M2: Meta-models

M3: Meta-meta-model

Figure 2.1: Meta-modelling architecture of the UML

model that requires their language extensions. They can therefore be regarded

as injecting ’virtual meta-classes’ into the UML meta-model (M2).

In its current form the UML is an engineering language, appropriate for

communications between engineers. Its semantics are defined by drawing asso-

ciations between model elements and real world things (such as data, behaviour,

roles, events), primarily using natural language. The vocabulary used, for exam-

ple ‘class’, ‘collaboration’ etc. has a common interpretation in English, and the

UML specification also provides extended descriptions of these elements. Sub-

tleties of the semantic domain are captured in the form of constraints, expressed

in OCL, which prevent users from producing models that would represent il-

logical situations in the real world, further enforcing and disambiguating the

informal semantics defined for the language. We use OCL constraints in profiles

in the same way. Constraints, acting at the meta-model level (M2), ensure that

the formal models produced are reasonable.

When presenting profiles, it is common to first present a domain model [13].

These are similar to the UML meta-model, and can be considered to reside at

level M2 in the conceptual architecture. Domain models can be thought of as

a new meta-models that describes the semantic domain directly, independently

of the need to refine the semantics of the UML meta-model.

2.2 The Model Driven Architecture

The Model Driven Architecture (MDA) [38] is a modelling approach based on

UML. It recommends that development organisations separate models of their

business logic (Platform Independent Models - PIMs), from technical artifacts,

such as design models (Platform Specific Models - PSMs) and source code. The
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benefit is to insulate organisations from the cost of re-deploying software services

as architectural infrastructures change, particularly middleware standards. The

approach also supports the integration of heterogeneous and legacy software.

For these reasons it is extremely well suited to development tasks in an electronic

service environment.

UML has been widely adopted in industry to represent software designs,

particularly those which are to be implemented in one of the currently dominant

object-oriented programming languages, such as Java, C++ and C]. However,

it is its heritage as an analysis language (in the sense of requirements capture

and problem-domain modelling) that makes it a suitable core representation

for the MDA approach, as the ability to represent a technology-neutral PIM

is provided by the facilities that support the modelling of problem domains in

object-oriented analysis.

Model transformation is central to the MDA approach. Transformations

from PIMs to PSMs deploy business logic on new technical platforms. If these

transformations can be automated, the development organisation realises signif-

icant cost savings when redeploying the application. The OMG is in the process

of standardising UML extensions for the description of transformations. How-

ever, OCL, applied at the metamodel layer using profiles can already be used

to describe consistency rules between models. These consistency rules can be

regarded as a contract or template for transformations. In the next chapter we

apply this approach to deriving analysis models from designs. This application

of transformations is unconventional from the perspective of the MDA approach,

as it introduces models that are not clearly either PIMs or PSMs. These formal

models can be considered to be views of the system in terms of non-functional

properties.

Extensions to the UML provide the means to denote designs more concisely.

By introducing domain-specific vocabulary using profiles the user can avoid the

overhead of expressing standard aspects of the design in fine detail. However,

this means that transformations from such designs must be informed not only

by the design model, but by the semantics of the extensions used in this model.

This makes the provision of domain models as a reference for UML extensions

vital when supporting the MDA development approach. In Chapter 5 we show

how a UML extension with an associated domain model could support the

TAPAS architecture, using the example of electronic service systems, a related

class of distributed systems.
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Chapter 3

Performance Analysis of

Designs

Formal analysis is often the only way to determine whether an architectural de-

sign will meet its QoS requirements, such as performance and reliability. Formal

analysis is rarely performed partly because of difficulties inherent in its applica-

tion, such as the need to employ unusual high-level languages, to combat state

space explosion, a lack of integrated tool support, and a lack of understanding

of the impact of architectural components on QoS.

Here we present our approach to delivering formal analysis in industrial de-

sign tools, specifically UML tools. The approach used the MDA principle of

model transformation to derive analysis models from annotated designs. The

derivation is expressed using logical constraints between design and analysis

models. The constraints are captured in a profile, a semantic extension to the

UML. The constraints form a contract for model transformation techniques,

allowing the transformation to be automated. Both the derivation and the re-

sulting analysis model are visible and modifiable within the tool adding the flex-

ability required to accomodate the difficulties inherent in deriving valid analysis

models for all designs. The transformation captures the expert knowledge re-

quired to produce an analysis model for the design domain. It therefore has the

potential to integrate knowledge about the impact of architectural components

on QoS.
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3.1 Approach

Our approach to delivering expert analysis techniques is to specify the derivation

of a formal analysis model from a UML design using logical constraints. This

is similar to the derivation of a PSM from a PIM in the MDA development

approach.

In our approach we define a profile which extends UML to model specifi-

cations in some formal language. This language can be used for analysis, so

these specification models can be operated upon to generate results. The MDA

technologies include standard interfaces for operating on model data [41, 39], so

there is the potential to closely integrate model solvers with design tools.

We use a profile for the design domain to direct the derivation of analy-

sis models. Constraints ensure that design models are reasonable and contain

sufficient detail to permit a derivation.

The derivation itself is specified in a third profile, allowing reuse of design

and analysis profiles. The mapping profile provides a stereotype on associations.

The refined type of association is constrained to be between two sub-models, one

representing the design and the other the analysis model. Additional constraints

on the contents of the sub-models, ensuring that the analysis model correctly

represents the design.

Profiles are repesented using UML and may be used wherever necessary by

including them in a model. Therefore, profiles specified according to our scheme

can be imported into standards-compliant tools to enable formal modelling and

the consistent association of formal models with designs.

To provide a completely automated derivation of formal models it is neces-

sary to implement an additional model transformation algorithm, perhaps using

a tool-specific scripting language. The mapping constraints provide the contract

for such an algorithm, and can be used to test its operation. Figure 3.1 shows

the overall approach.

Results can also be reintegrated into design models by applying a mapping

from a results domain to tagged-values or notes in the design domain. We do

not consider this in this paper.

The approach is applicable to analyses relying on graphical formalisms, as

UML can easily be extended to resemble these. For example, performance eval-

uation and functional analysis using Petri nets or Markov chains. [52] proposes

to use the technique for reliability modelling, and Baysian networks or fault

trees would be an appropriate formalism. Our example in the next section uses

queuing networks to forecast performance and resource utilisation.
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<<profile>> <<profile>> <<profile>>

Design Mapping Analysis

integration

semi-
automatic 

construction

interpretation

translation

design

results

tool 
execution

analysis

results

meta-
model:

model:

Figure 3.1: Approach

3.2 Example: Analysing real-time UML using

queuing networks

In this section we provide an example of our approach applied to define a deriva-

tion from a class of architectural models to queuing networks. To demonstrate

the way that this derivation would be used in practice, we present a running

example based on a hypothetical website content-management system. The

profiles and example packages are shown in Figure 3.2.

<<AnalysisContext>>
Website

(Figures 3 & 4)

<<QueuingNetwork>>
WebsiteQN
(Figure 5)

<<ACtoQN>>

<<profile>>
PADesign

<<profile>>
ACtoQNMapping

<<profile>>
AnalysisContext

meta-
model:

model:

Figure 3.2: Example profiles

The design model profile closely resembles the performance subprofile of

the standard Profile for Schedulability, Performance and Time Specification

(the ‘real-time profile’) [43], which permits the modelling of systems containing

contended resources. Reuse of such standard profiles enhances the applicability

of our approach.

To permit analysis the designer must model the environment of the system
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in terms of populations engaging in use-cases, identified by a stereotype on an

Actor. In our example there is a large <<OpenPopulation>> of site users, charac-

terised by an exponential arrival rate, and also a a small <<ClosedPopulation>>

of editors who interact after a think-time.

The behaviour of the system is modelled using a sequence diagram for each

use-case, including <<step>> actions with resource demands. The ‘user’ use-

case is shown in Figure 3.3.

User LoadBalancer Webserver1 Webserver2 Database

<<Step>>
{resource=
LB CPU,
demand=10}

<<Step>>
{resource=
Server 1 CPU,
demand=250,
reps=0.5}

<<Step>>
{resource=
Server 2 CPU,
demand=250,
reps=0.5}

<<Step>>
{resource=
Disk,
demand=50,
reps=10}

<<Step>>
{resource=
Disk,
demand=50,
reps=10}

Figure 3.3: Sequence diagram, describing demands associated with a use-case

The structure and <<resource>>s of the system are modelled using a de-

ployment diagram, as shown in figure 3.4

Webserver1

<<resource>>
Server 1 CPU

LoadBalancer

<<resource>>
LB CPU

Webserver2

<<resource>>
Server 2 CPU

CMS

<<resource>>
CMS CPU

Database

<<resource>>
Disk

Figure 3.4: Deployment diagram, describing system resources

Profile constraints are presented here in natural language, but all have a

counterpart defined formally using OCL. An example is provided later in the

section. The full OCL constraints are available on the web [54].The design
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profile constraints are:

1. An analysis context must contain at least one population.

2. A population (stereotype on an actor) must be associated with a use-case.

3. Every use-case must be realised by exactly one associated interaction (the dy-

namic part of a collaboration).

4. Each interaction should include at least one message with a resource demand.

5. Resources must be uniquely named.

6. Every message with a resource demand must be sent to a role deployed in a

context where the resource is available.

Analysis models are queuing networks. Figure 3.5 shows the queuing network

derived from our example design, including the demands due to editors.
Analysis model constraints:

1. The network must contain at least one workload class

2. Classifiers can be either queues or workloads, not both

3. All associations stereotyped as demands must start from a classifier stereotyped

with a workload and end in one stereotyped as a queue.

4. All queues must be demanded by at least one workload class.

5. All workloads must demand at least one queue.

<<Queue>>
LB CPU

<<Queue>>
Server 1 CPU

<<Queue>>
Disk

<<Queue>>
CMS CPU

<<Queue>>
Server 2 CPU

<<OpenWorkload>>
User

{rate = 0.00001}

<<ClosedWorkload>>
Editor

{population=10,
thinktime=720000}

{demand = 10}

{demand = 125}

{demand = 125}

{demand = 250}
{demand = 2000}

{demand = 5000}

Figure 3.5: Queuing network model

The mapping is defined in the context of a stereotype ACtoQN defined on an

association. Mapping constraints are:

1. The mapping must be between an analysis context model and a queuing network

model.

2. Every population must correspond to exactly one workload class in name, type

and tagged values.

3. Every workload must have exactly one corresponding population.
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4. All resources with resource demands in a use-case must be represented by queues.

5. All resource demands present in an interaction must be represented by demands

on associations between the corresponding workload and queue. The demands

must equal the sum of the products of action demands and action repetitions

within the workload.

Constraint 3 above is expressed in OCL as follows (this constraint relies on

the previously defined functions ‘populations’ and ‘workloads’ that return the

sets of these elements in the associated models):

package Foundation::Core

context Abstraction inv:

self.stereotype→exists(name = ”ACtoQN”)

implies

self.populations→forAll(w : ModelElement |

self.workloads→one(p : ModelElement |

p.name = w.name and

(w.stereotype→exists(name = ”OpenWorkload”) implies

p.stereotype→exists(name = ”OpenPopulation”)) and

(w.stereotype→exists(name = ”ClosedWorkload”) implies

(p.stereotype→exists(name = ”ClosedPopulation”))))

The queuing network model can be accessed via XMI [41] or JMI [59] meta-

data interfaces, and is in a form amenable to solution using the exact Mean-

Value Analysis (MVA) algorithm [30] without further translation. We imple-

mented the algorithm and applied it for various user population arrival rates to

produce the results shown in Figure 3.6. The insights that such results provide

are the key benefit of analysis. In this case the user experience seems relatively

insensitive to load, whilst the editors can be significantly hindered. Resource

utilisation figures show (perhaps unsurprisingly) that this is due to contention

for the database, suggesting possible design modifications.

3.3 Analysing distributed-system architectures

Having presented our general approach to deriving analysis models from designs,

we now discuss approaches to analysing software architectures. Architectural

components present a challenge to the method, as they have complex behaviours

that the developer should not be expected to model.

The use of transformations provides the means to address this problem.

The architectural components of designs can be denoted using an appropriate
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Figure 3.6: Response time results for varying user arrival rates

domain specific extension. The transformation can proceed from this view of the

architecture, incorporating knowledge about the behaviour of the architectural

components into the resulting analysis model.

In ongoing work we are investigating the performance of Enterprise Java-

Beans (EJB) servers in an effort to produce mappings to good predictive models

from EJB application designs. EJB designs in UML are enabled by the EJB

Profile [20], an ongoing standardisation effort.

<<profile>>
EJB

<<profile>>
Performance

<<profile>>
Joint

<<profile>>
SunRI

<<profile>>
Analysis

<<profile>>
Mapping

<<profile>>
Design

Figure 3.7: Profiles for the performance analysis of EJB designs

Figure 3.7 shows the profiles supporting the derivation of analysis models.

We now use a combination of the Realtime profile and the EJB profile. These

we combine by package subclassing. Because different implementions of the

EJB container standard behave differently, we introduce an additional derived

profile that includes a stereotype to distinguish a particular implementation, in

this case the Sun Reference Implementation.

Figure 3.8 shows part of the design of an EJB auction-house application,
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<<E J B R emoteInterface>>

User

+getLogin() :  S tring

+setLogin(login:S tring)

+getP assword() :  S tring

+setP assword(password:S tring)

+getId() :  int

+setId(id:int)

<<E J B E ntityHomeInterface>>

UserHome

+create() :  User

+findB yLogin(login:S tring) :  C ollection

+findB yP rimaryK ey(key:UserP K ) :  C ollection

UserP K

-id : int

<<instantiate>>

<<E J B Implementation>>

UserB ean

-login : S tring

-password : S tring

-id : int

+getLogin() :  S tring

+setLogin(login:S tring)

+getP assword() :  S tring

+setP assword(password:S tring)

+getId() :  int

+setId(id:int)

{E J B P ers is tenceT ype=C ontainer,

E J B R eentrant=false}

<<E J B P rimaryK ey>>

<<E J B R ealiseR emote>>

<<E J B R ealiseHome>>

<<E J B R ealiseR emote>>

<<instantiate>>

<<E J B R ealiseHome>>

<<E J B P rimaryK ey>>

Figure 3.8: User classes in EJB auction application

including the User entity. The basic UML class diagram is enhanced with stere-

types from the EJB profile.

myC ontainer :  C ontainer

myNaming : Naming

auction : 

dB Instance : Database

networkC onnection : 

user :  T ablemyDB S erver :  

myS erver :  

<<PAhost>>

<<GRMDeploys>>

<<GRMDeploys>>

<<GRMDeploys>> <<GRMDeploys>>

<<GRMDeploys>>

<<PAresource>>

<<EJB-JAR>>

<<PAresource>>

<<PAhost>>

Figure 3.9: Deployment of EJB auction application
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Figure 3.9 shows the deployment of the EJB application, including stereo-

types from the EJB profile, the real-time profile (denoting deployment relation-

ships and resource types), and a stereotype identifying the implementation of

the EJB container.

 :  C lient  :  Naming

1 : lookup(

 :  UserHome

2 : create(

)

)

Figure 3.10: Sequence diagram for create-user usecase

The view of the behaviour of the application is still provided by a com-

bination of use-case and sequence diagrams. However, the sequence diagrams

necessarily omit the internal behaviour of the architectural components. For

example, Figure 3.10 shows sequence diagram for the create user use-case as it

appears to the applications developer. In fact, in order to create a new user,

the EJB container must undertake a number of internal actions, including the

creation of a proxy and instance objects, as shown in the more detailed se-

quence diagram in Figure 3.11. The mapping must take into account this extra

behaviour when deriving the ultimate performance model. If necessary, two

mappings may be used, the first to expand the design into an exploded version,

including the actions of the architectural components, and the second to derive

the performance model. This approach would have the advantage of providing

a visible reference for the developer, effectively explaining how the predicted

performance was derived.

Software and hardware architectures potentially provide a benefit to our

method. Because their implementation changes relatively slowly, it is possible

to incorporate default values for performance. These will not necessarily be

absolutely accurate, but their relative values may be accurate. For example,

the relative speeds of information exchange in memory, to backing store and

over a network can be determined. Incorporating this knowledge into a mapping

would allow a ‘rule-of-thumb’ assessment of application performance that would

certainly have a good chance of identifying poor caching strategies.
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 : Client  : Naming  : UserHome

 : EJBObject

 : BeanInstance

1 : lookup()

2 : create()

5 : new

3 : new

4 : ejbCreate()

6 : assignInstance()

7 : ejbPostCreate()

1 : lookup()

5 : new

3 : new

4 : ejbCreate()

6 : assignInstance()

7 : ejbPostCreate()

Figure 3.11: Exploded sequence diagram for create-user usecase

3.4 Other Non-functional Properties

Our work thus far has concentrated on deriving performance values. These are

obviously of paramount importance to application services. However, just as

vital are approaches to managing the reliability of services. The paper [52],

included as supplementary material to this report, details our early work in this

area.

3.5 Related Work

The notion of deriving mathematical models from UML diagrams is not a new

one, and a complete survey is beyond the scope of this paper. Efforts can

be broadly classified into those that seek to define a formal semantics for the

language [58, 29, 22], those that derive models for functional properties [34, 21],

and work such as our own that derives models for non-functional properties [2].

Previous work suffers in two respects:

Firstly, a formal semantic for the UML has not been standardised, and it

is unlikely to be in the future. The implication for efforts to derive formal
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models is that no assertion about the validity of the derivation can be made.

Two methods can derive functional models that associate different behaviour

with the same UML model, and there is no way to chose between them. The

meaning of the UML model is unclear in isolation, with different analysts em-

bedding different personal assumptions in their analyses. This is also true of the

real-time profile, which defines its semantics in terms of an MOF-style domain

model. Different performance models will produce different results, and the

domain model can only be used to qualitatively assess the extent to which the

derivation respects the domain semantics. Even if a completely formal seman-

tic were available it is unlikely to be computationally feasible to determine the

consistency of derivations. Formalisms often make simplifying assumptions to

render analysis feasible (e.g. the memory-less property in performance models)

that conflict with domain semantics, so some notion of approximate consistency

is also required.

The second problem is that previous work adopts descriptions of deriva-

tions, such as axioms, graph-grammars or informal associations that are not

standard to the MDA. Moreover, the formal models themselves are described

in terms of their abstract mathematical structure, with no consideration given

to their management in an engineering environment. Often the details of the

transformation are captured by a research prototype that serves as a reference

implementation, and provides the only practical support for the method. This

fails to realise a key benefit of a standards-based approach, which is to enable

a market in robust industrial tools that support it.

Our approach addresses both these issues by expressing both the deriva-

tion and all models using UML. The UML design becomes closely coupled to

its assigned semantic in whatever formalism, because the mapping and the de-

rived models are stored in the same tool or repository with it. Any standards-

compliant tool is capable of storing these models.

We believe that our approach to capturing relationships between UML mod-

els and formal models is compatible with most of the very useful derivations

hitherto proposed, and also with methodologies that explicitly prescribe formal

modelling, for example [56] and [5]. Our example derives a queuing network

model from the performance sub-profile of the real-time profile, and so resem-

bles [48].

Our use of OCL constraints at the meta-model level is related to work to

define inter-diagram consistency within the UML [26], particularly that of the

NEPTUNE project [6] which developed the OCL Evaluator [9], although we

are concerned with separate semantic domains and embed our constraints in
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profiles, rather than directly into the meta-model. The concept of defining the

semantic of a UML diagram in terms of another UML diagram is similar to

the work of the Precise UML group [11], who include semantic domains and

transformations in meta-models.
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Chapter 4

SLAng Semantics

4.1 Introduction

The integration of SLA information with analysis and architectural models of

systems requires a means to model SLAs and an understanding of what the

models mean. In this chapter we formally define the meaning of the SLAng

language. The resulting semantic model forms the basis for a UML extension

allowing the modelling of SLAs in the same context as the analysis models and

architectural designs discussed in previous chapters.

The meaning of SLAng is formally defined in terms of the behaviour of the

services and clients involved in service usage. Benefits of the formal semantic

include the reduction of ambiguity in the meaning of the language and the means

to check the semantics to ensure the absence of inconsistencies and loopholes.

The style of semantic definition used aims to be user-friendly, allowing it to

serve as a reference for human negotiators. It also provides a formal basis

for comparisons between SLAs, and an abstract reference model of systems

employing SLAs that can guide implementation and analysis efforts. These

latter facilities address two types of compositionality for SLAs: inter-service

composition in which required QoS levels are compared to offered QoS levels,

and intra-service composition in which the QoS levels offered by a service are

related to the levels provided by its components.

We use the Unified Modelling Language (UML) to model the language, pro-

ducing an abstract syntax. We embed this language model in an object-oriented

model of services, service clients and their behaviour. The presence of SLAs,

instances of the language model, constrains the behaviour of the associated ser-

vices and service clients. The constraints are defined formally using the Object
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Constraint Language (OCL), with accompanying natural language descriptions,

and define the semantics of the language. The semantics are easily understood

in the context of the service model. We exemplify the approach in Section 4.3

by describing SLAng’s semantics for ASP SLAs.

Inter-service composition requires the matching of desired service levels, ex-

pressed as target SLA terms, with offered service levels. SLAs are deemed to be

compatible if the offered SLA permits no behaviours (according to the service

model) that would violate the target SLA. Inter-service composition is discussed

in Section 4.4.

Intra-service composition requires a specification of the behaviour of a system

extraneous to SLAs. We therefore employ our combined service and language

model as the basis for an extension of UML. This allows the modelling of ser-

vices and SLAs in the same context as more detailed design information. The

semantic model of services and SLAs informs analysis activities that determine

the emergent qualities of composed systems. It can also inform the development

of SLA aware services, as it provides a reference model for the behaviour of such

systems. The UML extension is provided in the form of a QoS catalogue ap-

propriate to the proposed ‘UML Profile Modelling Quality of Service and Fault

Tolerance Characteristics and Mechanisms’ (henceforth ‘QoS profile’), and is

described in Section 4.5.

The next section describes SLAng in more detail. Section 4.3 gives an ex-

ample of the semantic definition of SLAng by presenting the semantics of ASP

SLAs. Section 4.4 discusses the compatibility of SLAs. Section 4.5 presents the

QoS catalogue for the ASP characteristics in SLAng. Section 4.6 discusses the

differences between SLAng and other SLA languages in terms of approach and

style of semantic definition.

4.2 SLAng

SLAng meets the need for an SLA language to support construction of dis-

tributed systems and applications with reliable QoS characteristics. The syn-

tactic structure and semantics of SLAng are defined with reference to a model

of distributed system architecture. The model defines the scope of the language,

and has assisted in identifying the service usage scenarios and parameters that

SLAng must represent. The reference model is shown in Figure 1.11.

In our model, applications are clients that use application services to deliver

end-user services. Application services are services with an electronic interface,
1Slightly modified from [28]
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such as web services or J2EE or .NET components. Containers host application

services and are responsible for managing the underlying resource services for

communication, transactions, security and so forth. Networks provide commu-

nication between services and storage can implement persistence for containers.

All SLAng SLAs include: An end-point description of the contractors (e.g.,

information on customer/provider location and facilities); contractual state-

ments (e.g., start date and duration of the agreement); and Service Level Spec-

ifications (SLSs), i.e. the technical QoS description and the associated metrics.

SLAng defines six different types of SLA, corresponding to service usages

present in the model. These are divided into Vertical SLAs, in which the service

provides technical support for the client, and Horizontal SLAs, in which the

client subcontracts part of the functionality of a service to a service of the same

type. The hierarchical structure of SLAng’s syntax subdivides the SLS terms

into SLA-type specific groups. The terms are further subdivided into client,

provider and mutual responsibility clauses.

The Vertical SLAs are Hosting (between service provider and host), Persis-

tence (between a host and storage service provider) and Communication (be-

tween application or host and Internet service providers). The Horizontal SLAs

are ASP (between an application or service and ASP), Container (between

container providers) and Networking (between network providers).

The SLAng syntax is defined using XML Schema. The choice of XML as

a basis for the language reflects the popularity of XML in the domain of dis-

tributed systems. In particular XML documents are frequently used to provide

service meta-data [64, 63] and deployment descriptors [60]. By adopting XML

as a basis for SLAng we seek to ease the integration of QoS adaption and ne-

gotiation technologies depending on SLAng statements with existing Internet

service technologies.

4.3 SLAng Semantics

A formal semantic definition for SLAng has at least the following advantages:

1. Ambiguity concerning the meaning of the SLA is limited to disagreements

concerning correspondence between semantic elements and the real world.

Since the semantic elements are more specific than the corresponding lan-

guage elements, ambiguity is reduced overall.

2. The implications of the semantic definition can be tested and refined by

generating SLAs and assessing whether the semantics are reasonable.
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ASPSLA

+serviceId : String

MonitoringClause

+solutionName[0..1] : String

+reportFrequency : double

+reportingOnDemand : boolean

ClientPerformanceClause

+name : String

+maximumThroughput : doubleClientResponsibilities

ApplicationServiceClient

+name : String

ServerResponsibilities

ServerPerformanceClause

+name : String

+maximumLatency[0..1] : double

+reliability[0..1] : double

+maxTimeToRepair[0..1] : double

BackupClause

+solutionName : String

+completeBackupInterval : double

+incrementalBackupInterval[0..1] : double

+backupEncryption[0..1] : boolean

+individualClientBackup[0..1] : boolean

Operation

+name : String

ScheduledClause

SLA

+startDate : double

+duration : double

+sLSId : String

ApplicationService

DataType

+name : String

1..*

0..*

0..*

1..*

0..1

0..* 0..*

0..*

0..*

+accessOperation

0..*

0..*

+accessOperation

0..*0..*

1..*

0..*

0..*

0..*0..*

Schedule

+name : String

+startDate : double

+duration : double

+period : double

+endDate : double
0..* 1..*

Party

0..*

+client

0..*

+server

0..*0..*

+server +client

0..* 1..*

1..*

0..*

0..* 0..*

0..*

0..* 0..*

0..1

0..*

0..*

0..*

1..*

0..*

0..*0..*

0..*

0..*

+accessOperation
+accessOperation

Figure 4.1: Abstract Syntax of SLAng

3. The semantic definition forms an objective basis for definitions of rela-

tionships between SLAs, in particular matching desired service levels to

offered service levels as required for inter-service composition.

4. The semantic definition provides a reference for service implementations

that must conform to SLAng SLAs.

4.3.1 Approach

PartyAssetApplication

Operation

+name : String

ApplicationServiceClient

+name : String

BackupSolution

+name : String

DataType

+name : String

MonitoringSolution

+name : String

ApplicationService

0..* +owner

1..* 0..*

0..*1..*

0..* 1..*

1..*1..*

1..*

0..*

0..* +owner

1..* 0..*

1..* 0..*

1..*0..*

1..*1..*

0..*

1..*

Figure 4.2: Refined reference model for application service provision

The approach taken to formalising SLAng adapts the approach of the Precise

UML group to formalising UML [11]:
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1. The language itself is modelled in UML. This creates a meta-model, or

abstract syntax. Statements in the language can be regarded as instances

of this model. UML is based on a defined abstract syntax, which serves as

a point of attachment for semantic descriptions, meta-data interfaces and

notations. In the case of SLAng, the XML schema provides the primary

definition of the language. It was therefore necessary to manually translate

this schema into UML. Figure 4.1 shows the abstract syntax for ASP

SLAs. It reflects the hierarchical structure of the XML schema for SLAng,

with the top level defining the type of the SLA, and separate clauses for

provider and client responsibilities (there are no mutual responsibilities in

this example).

2. The parties and services involved in the agreement are modelled. In the

case of SLAng, the informal reference model provided a starting point.

This was translated into UML and refined. Figure 4.2 shows the refined

reference model for application service provision. Additional concepts are

introduced to support the definition of semantics for terms in SLAng. For

example, an ASP SLA can specify the types of backup and monitoring

solution used. BackupSolution and MonitoringSolution are introduced to

allow the assertion that the solutions used in the real world must corre-

spond to those specified in the SLA.

Defining the type of software used for backup and monitoring may seem to

contribute little to the principle goal of ensuring QoS for distributed ap-

plications. However, the industrial requirements on which SLAng is based

indicate that clients frequently required this. The capacity to formalise

clearly such apparently informal constraints is a significant benefit of the

approach taken.

3. The behaviour of the parties and services involved in the agreement is

modelled, using the reference model as a basis. Figure 4.3 shows the be-

haviour of application services and their clients. The primary interaction

in this case is the ServiceUsage, an interval of time during which the client

is invoking an operation of the service. Operations are abstract capabili-

ties of the service that can be invoked by the client. The client must be

able to detect the beginning of the usage and its successful completion.

Also, if the usage appears to have completed, the client can detect whether

a failure occurred.

4. The language model is related to the elements that the SLAs are intended

to constrain. This can be seen in Figure 4.1, where the classes Appli-
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cationService, Operation, ApplicationServiceClient, BackupSolution and

MonitoringSolution are reference model elements, associated with the rel-

evant clauses in the language model.

5. The semantics of SLAng are defined by the constraints imposed on the

behavioural model by the presence of SLA elements. These are expressed

using OCL constraints defined in the context of the SLA clauses. The

SLA is associated with a service and service client, so the constraints can

refer to these entities and place conditions upon them. For readability,

the constraints are also expressed in natural language.

The complete set of constraints defining the meaning of the ASP SLA are

documented in [55].

BackupAccessOperation

Backup

+incremental : boolean

+dataTypes[1..*] : String

+encrypted : boolean

+individual : boolean

Interval

+duration : double

Log ServiceUsage

+failed : Boolean

Operation

+name : String

LogAccessOperationMonitoringSolution

+name : String

ApplicationServiceClient

+name : String

StoredData DataLoss

DataType

+name : String

0..*

0..*

0..* 0..*

0..*0..*

0..*

0..* 0..*

+for 0..*

1..*

0..*

+owner
0..*

1..*

+created

0..1

0..*0..1

+deleted

0..*

+lost

1..*

+recovered

0..*

0..*

0..*

0..1

+created

0..*0..*

0..*

+recovered

1..*

0..*

0..*

0..*

0..*

0..*

0..*

Event

+date : double

BackupSolution

+name : String

0..*0..*

Figure 4.3: Behavioural model for application service provision

4.3.2 Example

We now present the OCL definition of the constraint used to define the meaning

of maximum latency and reliability.

Reliability in the ASP SLA is defined in terms of failed or overdue usages of

the system. Each failure gives the client leave to assume an interval of service

outage equivalent to the inter-invocation time if they were using the service at

the maximum allowable rate. This is because if the client does not use the

service then they cannot reasonably claim that it is unavailable, and we do not

assume that the provider can be trusted to report their own outages honestly
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(neither can the client necessarily be trusted – a trusted third party could poll

the service instead, with the same definition of reliability being required). The

maximum allowable rate is the strictest client performance clause applying at

the moment the failed operation is invoked.

Server and client performance clauses in the SLA are associated with sched-

ules. A schedule defines when the clause applies, by specifying a start date,

an end date, a duration and a period. The clause applies repeatedly, lasting

for the duration, then becoming inactive until the period is complete. Multiple

schedules can be associated with a clause to allow the specification of complex

timing, with the interpretation that the clause applies when any one of its sched-

ules apply. For example, five schedules with durations of 8 hours, periods of 1

week and start dates offset by 1 day can be combined to specify the composite

schedule ‘every working day’.

The following OCL definitions rely on the models presented in Figures 4.1, 4.2 and 4.3.

Each is defined in the context of the class ServerPerformanceClause in Fig-

ure 4.1, meaning that the constraints apply to all instances of that class, i.e.

all server performance clauses in the real world. The operations and usages as-

sociated with the clause are referred to in the constraints by navigating across

the associations present in the UML models, using the dot operator (.) and

the name of the opposite association end, usually the name of the associated

class with a lower-case first character. Attribute values and OCL operations

are referred to using the same syntax. OCL operations are side-effect free op-

erations defined in the context of classes, and we have used them to decompose

complex constraints. By convention we have omitted their signatures from the

operations compartment of our diagrams.

Reliability constraint: Proportion of downtime observed to total time that

the clause applies must not be greater than the percentage of permitted failures

(1 - the reliability).

context ServerPerformanceClause inv:

self.operation→forAll(o |

totalDowntime(o) < (applicationTime ? (1 - reliability)))

The following additional OCL operations support the definition of the reli-

ability constraint:

context ServerPerformanceClause def :

−− Returns the client performance clauses governing the performance of operation o

34



at time t.

let applicableClientClauses(t : double, o : Operation) =

sla.clientResponsibilities.clientPerformanceClause→select(c |

c.schedule→exists(s | s.applies(t)))

−− An expression for the maximum throughput with which the client can use an op-

eration at time t, or −1 if there is no limit

let minThroughput(t : double, o : Operation) =

if applicableClientClauses→isEmpty() then −1

else applicableClientClauses→iterate(

c : ClientPerformanceClause, minTP : double |

minTP.min(c.maxThroughput))

−− Amount of downtime observed for a failure at time t. This is 1 / the most restric-

tive throughput constraint applicable at the time

let downtime(t : double, o : Operation) : double =

if minThroughput(t, o) <= 0 then 0

else 1 / minThroughput(t, o)

−− Total amount of downtime observed for the operation

let totalDowntime(o : Operation) : double =

o.serviceUsage→select(u |

(u.failed or u.duration > maximumLatency) and

schedule→exists(s | s.applies(u.date))

)→collect(u | downtime(u.date, o))→iterate(

p : double, sumP : double | sumP + p)

The constraint also relies on the definition of the following operations: appli-

cationTime, defined in the context of ScheduledClause, the superclass of Server-

PerformanceClause, which evaluates to the total time for which a Scheduled-

Clause is applicable; and applies, defined in the context of Schedule, which

evaluates to true if the schedule applies at the specified time and date.

The complete set of operations, combined with the constraint, defines the

effect of the SLA on the environment. The proportion of failed or overdue

service usages may not exceed 1 − the specified reliability. The definition is

unambiguous and consistent, providing a strong reference for parties employing

SLAs. The semantics also support activities related to service composition, as

discussed in the subsequent sections.
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4.4 Inter-service Composition of SLAs

We say that an SLA B is compatible with another A if the set of allowable

behaviours for B is a subset of those for A. In other words, a system conforming

to B would never violate A, and would hence be perfectly acceptable to a client

requiring A.

The notion of compatibility supports inter-service composition. One service

can require another and express its requirements using an SLA. Any service

that both provides the required functionality and offers a compatible SLA can

be composed to fulfil the requirements.

Our definition only allows the comparison of fully specified SLAs. SLAs

include restrictions on client behaviours and it might seem preferable to allow

the comparisons of SLAs with requirements relating only to server behaviour.

However, this would be dangerous due to interactions between SLA terms. For

example, in the definition of reliability presented in the previous section there

is a relationship between the invocation rate constraint on the client and the

reliability. Therefore, an SLA offering higher reliability and a faster rate is still

not necessarily compatible with an SLA with a slower rate, as the absolute

number of failures may be the property of concern for the client, rather than

the absolute number of successes.

A possible generalisation of the notion of compatibility would be the ability

to compare an SLA C against another D where sets of values or ranges were

specified for each parameter in D, with the interpretation that C is compatible

if it is also compatible with some specific valuation of D within the ranges.

One possible procedure for checking if B is compatible with A is to employ

the semantic model as a meta-model. A could then be associated with the service

model and the constraints of A checked for the set of all behavioural models

acceptable to B (which might be thought of as the set of all traces of system

behaviours). Clearly this approach is potentially extremely computationally

expensive, and unworkable if the possible behaviours of B are infinite. It would

be preferable to employ a theorem prover to establish the validity of B → A

where B is the union of the constraints in B and A the equivalent for A. Future

work will investigate this approach.

Our definition of compatibility is similar to that of conformance, defined in

relation to the language QML [14], in which a contract A conforms to another

B if its constraints are stronger. Each SLA dimension defined for a contract in

QML has a direction indicating an ordering over values of the metric, with higher

values implying stronger constraints. Conformance of contracts can therefore be

assessed by comparing the values of corresponding dimensions in two contracts.
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In comparison our definition of compatibility is hard to check and somewhat

inflexible. However, its basis in the semantic definition of the SLA terms, rather

than on user-defined ordering of metric spaces suggests that the concept offers

safer guarantees that requirements will be met, particularly in the presence of

dependencies between SLA terms as discussed above.

4.5 QoS Catalogue for SLAng

<<QoSCharacteristic>>

ApplicationServiceBackupQoS

+backupSolutionName : String

+completeBackupInterval : double

+incrementalBackupInterval : double

+dataTypes[1..*] : String

+backupEncryption[0..1] : boolean

+individualClientBackup[0..1] : boolean

<<QoSCharacteristic>>

OperationQoS

+maximumLatency : double

+reliability : double

+maxTimeToRepair : double

Schedule

+startDate : double

+endDate : double

+period : double

+duration : double<<QoSCharacteristic>>

ApplicationServiceMonitoringQoS

+monitoringSolutionName : String

+reportFrequency : double

+reportingOnDemand : double

<<QoSCharacteristic>>

ClientPerfomance

+maximumThroughput : double

<<QoSCharacteristic>>

ASPSLA

Figure 4.4: ASP QoS Characteristics for SLAng catalogue

Reasoning about internal composition of SLAs is a special case of QoS pre-

diction, in which some components are governed by SLAs and the system as

a whole will conform to, or offer an SLA. QoS prediction requires a view of

the system in which the effect of the components on the quality attributes are

known. It may also require sophisticated analysis to determine the emergent

QoS values. UML potentially offers such a view. It can represent the logical

structure, deployment and behaviour of a service. It can also be extended using

profiles to enable the description of QoS properties. In this section we describe

how SLAng SLAs may be modelled using UML, and how their semantics enables

analysis and implementation activities.

A profile is a semantic extension for UML allowing it to naturally model

domains of interest [44]. It is common to define the semantics of a profile with

reference to a domain model [13]. The interpretation is that elements in the

UML model labelled with stereotypes correspond to instances of the domain

model. The Object Management Group (OMG) has standardised profiles for

particular application areas. The use of standard profiles ensures reusability for

models, and interoperability for tools that operate on annotated model data.
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The QoS profile [36] is currently a proposed standard. It allows the modelling

of QoS characteristics as classes, and QoS values as instances of these classes.

QoS values can be associated with other model elements to indicate behaviour

or requirements. The proposal compensates by providing a catalogue of QoS

characteristics with informally defined semantics.

Rather than define a new profile to represent services and SLAs we have

reused the QoS profile by defining a QoS catalogue for SLAng. Figure 4.4

shows the SLAng catalogue for ASP SLAs. The SLA terms are defined as QoS

characteristics and therefore inherit the definitions provided by the semantic

model, analogously to defining a profile directly according to a domain model.

The QoS profile allows corresponding QoS values to be attached to messages

in a UML 2 communication diagram using one of three stereotypes: QoSCon-

tract, QoSRequired and QoSOffered. In all cases we state that the recipient of

the message corresponds to the service associated with the SLA in the semantic

model, and the sender corresponds to the service client. These elements are

assumed to behave in accordance with the SLA terms. Where QoSOffered is

defined together with QoSRequired or QoSContract there is the opportunity for

a tool to check the compatibility of SLAs according to the compatibility criteria

defined in the previous section.

Figure 4.5 shows an example model including a SLAng ASP contract govern-

ing the interaction between a client and an online auction service. Constraints

on the bidding operation are shown.

:ApplicationServiceMonitoringQoS:ApplicationServiceBackupQoS

sd ASP Example

 :Customer  :AuctionService

1: Bid

 :ASPSLA

<< QoSValue >>

<<QoScontract>>

<<QoSValue>>

 

backupSolutionName = "TAR"
completeBackupInterval = 1 day
incrementalBackupInterval = 1 hour
dataTypes = {"users", "bids"}

<<QoScontract>>

<<QoSValue>>

 

monitoringSolutionName = "webstats"
reportFrequence = 1 day
reportingOnDemand = false

<<QoSValue>>

 :OperationQoS

maximumLatency = 0.5 sec
reliability = 0.995
maxTimeToRepair = 5 min

<<QoScontract>>

 

<<QoSValue>>

:ClientPerformance

maximumThrouput = 10 /s

<<QoScontract>>

Figure 4.5: Example communication diagram including SLAng QoS values

The ability to represent SLAs in UML is a necessary but insufficient condi-
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tion to enable reasoning about QoS properties. It is also necessary to represent

the impact of system components not directly governed by SLAs, and in some

cases to support an analysis method for determining the emergent characteris-

tics of the system. The ‘Profile for Schedulability, Performance and Real-Time

Specification’ (henceforth ‘real-time profile’) [42] provides these facilities for sys-

tems in which performance is an issue and resource utilisation and scheduling

have the greatest performance impact. It supports the derivation of models such

as queuing networks or Petri nets. Other efforts are underway to extend UML

to describe reliability properties [52].

[36] shows how QoS characteristics can be defined using the domain model

of the real-time profile, allowing direct analysis. Because we use an alternative

semantic model this approach is not directly available to us. However, it is

perfectly possible to use our QoS characteristics simultaneously with real-time

profile annotations with the interpretation that the real-time measures are an

approximation of the service levels. We make this correspondence explicit by

introducing a new stereotype <<approximation>> defined in its own profile

‘ValueRelationships’. This stereotype is applicable to dependencies between

tagged values, and its interpretation is that the dependent is an approximation

to the target. In future work we will consider how this relationship can be

formalised, and what its implications are for design consistency.

We have now provided adequate notation to present a complete picture of

the behaviour of an ASP system in terms of performance, including SLA terms

and with sufficient detailed to permit analysis.

UML is the design language of choice when adopting a Model Driven Archi-

tecture (MDA) [13] development strategy. Model transformation is a key tech-

nology in the MDA, used to deploy business knowledge automatically in new

technical domains. Transformations rely on the semantics of both source and

target domains. By providing a rich semantic and representation for SLA-aware

systems our QoS catalogue potentially serves as a starting point for implemen-

tations of such systems, according to MDA principles and benefiting from model

transformations. This approach is described in more detail in Chapter 5. In

Chapter 3 we show how MDA techniques can be used to enable automatic anal-

ysis, giving an example in which performance analysis proceeds from designs

expressed using the real-time profile. The SLAng semantics therefore provides

a reference for both analysis and implementation efforts relating to internal

composition of SLAs.
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4.6 Related Work

Our approach to defining the semantics of SLAng is derived from the work of

the Precise UML group, who define an abstract syntax for UML and lend it

semantics by associating a semantic domain. Our contribution to the approach

is to demonstrate its application at a high level of abstraction, and including

sophisticated quantitative properties. In this section we compare the semantic

definition of SLAng to that offered by other SLA languages. We also briefly

describe features of other languages lacking in SLAng, and their potential impact

on the semantic definition.

The QuA project adopts the most rigorous approach to defining the seman-

tics of QoS properties [57], although to our knowledge they have yet to define

a concrete syntax for representing SLAs. According to their model, all QoS

properties are related to the performance of a service, which supplies a set of

operations. Input and output messages are causally related by operation invo-

cations. Output messages are characterised by a set of variables. A set of error

functions are defined over the difference vector between an observed output

trace for a particular input trace, and the ideal trace as it would be observed

were the service deployed on infinitely fast equipment operating without error.

SLAs are defined using constraints on the values of error functions.

It is possible to see correspondences between our semantics and the QuA

approach. In our case the service model defines the information available con-

cerning service operation, and the OCL constraints provide a concrete repre-

sentation of the error functions. Features of our semantics not obvious in the

QuA approach are constraints independent of a service model assumption, such

as the constraint that the service provider must be capable of providing the

monitoring solution specified in an ASP SLA, and the ability to constrain client

behaviour (in QuA terms, the input trace).

QML[14]defines a type system for SLAs, allowing the user to define their own

dimension types. Whilst this makes the language highly extensible the meaning

of the individual metrics in the context of the system is not formally established.

Since exchange of SLAs between parties requires a common understanding of

such metrics, this can be regarded as a serious deficit. QML does define a

rigorous semantic for both its type system and its notion of SLA conformance

however.

QML and WSOL [62] both provide type systems for SLAs, allowing the

same SLA to be described in abstract and also instantiated with specific values.

This provides more guidance to developers of new SLAs than our use of XML

schemas. Because SLAs require common understanding of terms between par-
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ties, it is to be hoped that new types of SLA will be defined only infrequently.

However, the generalisation relationships between SLAs are potentially helpful

in structuring a family of SLA types. WSOL provides additional reuse facili-

ties [46], including template instantiation and reuse of definitions.

WSOL [61]and UniFrame [7]SLA specifications both rely on the specification

of measurements in external ontologies. These ontologies are structured natural

language descriptions of measurements, including advice on how they should be

taken and their interdependencies.

WSLA [18] is another XML based web services SLA language. All measure-

ments are assumed to be provided by a web service encapsulating monitors. No

constraints are placed on the implementation of such monitors, so a common

understanding of their role remains external to the definition of the language.

WSLA provides the ability to create new metrics defined as functions over

existing metrics. This is useful to formalise requirements expressed in terms of

multiple QoS characteristics, without impacting on notions of compatibility of

SLAs. The semantic for expressions over metrics is not formally defined, but no

barrier prevents such a definition.

WSLA is an XML language, structured in such a way that monitoring clauses

can be separated from contractual terms for distribution to a third party. We are

interested in supporting third party monitoring schemes with SLAng. Precisely

how such schemes will work will require careful modelling to inform the design

of the metrics. However, this principle of syntactic separation is clearly useful.

WSOL provides an additional syntax to interrelate service offerings. Re-

lationships indicate substitutability of SLAs in the event of a violation. Such

facilities are clearly useful for a language

WSOL and WSLA allow the definition of management information, includ-

ing financial terms associated with SLAs. These are not presented with a de-

fined semantic (although WSOL claims the need for financial ontologies), but

are clearly a desirable feature of SLA languages lacking in SLAng. Both lan-

guages also define management actions, including notifications in the event of

SLA violations.

The CORBA Trading Object Service [37] allows the advertisement and se-

lection of services offers based on constraints over typed properties. These

properties can include QoS specifications, and generally can take any IDL type.

Their semantics is not formally defined; neither are external ontologies specified.

It is therefore up to the trader and its clients to agree an interpretation for the

properties.

QuO [1] is a CORBA specific framework for QoS adaption based on prox-
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ies. It includes a quality description language used for describing QoS states,

adaptations and notifications. Properties in the language are defined to be the

result of invoking instrumentation methods on remote objects. Like WSLA, no

formal constraints are placed on the implementation of these methods.
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Chapter 5

Modelling Electronic

Services

This chapter presents a profile for modelling systems of electronic services us-

ing UML. For the purposes of this chapter we consider a restricted definition

of electronic service aimed at business systems, distinct from the more general

notion of application service used in the rest of this document. Electronic ser-

vices encapsulate business services, an organisational unit focused on delivering

benefit to a consumer, to enhance communication, coordination and informa-

tion management. Electronic services are application services for the purposes

of communication, but they are also associated with behavioural specifications

in the form of workflow descriptions, and with business concepts such as provi-

sioning and resource management. The intent of electronic services is to enable

organisations to structure their businesses in order to gain the benefit of work-

flow management, enterprise resource planning, process modelling and electronic

commerce.

The relevance of Electronic Service Systems (ESSs) to the TAPAS project

is two-fold. Firstly, TAPAS is concerned with service provision, and electronic

services provide a rich example of a service model. The electronic service model

includes business and resource views that will be relevant to organisations seek-

ing to deploy trusted and QoS aware applications. Secondly, the approach taken

to modelling electronic services that we outline in this chapter could equally well

be applied to the TAPAS project. The benefits of the approach are to docu-

ment ESSs, to provide platform independent models of ESSs as a precursor to

MDA development processes, and to enable reasoning about the behaviour of

composed ESSs.
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In this chapter we define a UML profile for modelling ESSs. The profile

is associated with a domain model that describes its semantics. As discussed

in Chapter 2, this is a common approach for defining the semantics of a UML

extension. We also provide an operational semantics for electronic services,

formalising our notions of service behaviour and composition.

For the approach to be applicable to TAPAS we need to determine both

a business model for the composition of trusted and QoS-aware services and

an architectural view of the TAPAS platform. We envisage the latter emerg-

ing from a combination of the SLAng semantics (Chapter 4), which describe

the behaviour of QoS aware applications, and the TAPAS platform specifica-

tion [12], which will determine the architecture of such systems. A unified

model of TAPAS architecture and business processes will hopefully be the focus

of future consultation with our project partners.

The remainder of this chapter is structured as follows: Section 5.1 introduces

ESSs in more detail; Section 5.2 describes the semantic domain model for ESSs

including the operational semantics; Section 5.3 describes the derived profile;

Section 5.4 gives an example of a service model based on the freight industry.

5.1 Electronic Service Systems

An electronic service is a set of metadata, communication interfaces, software

and hardware supporting a business service [33]. A business service is a bun-

dle of coordinated business capabilities (the content of the service) associated

with provisioning mechanisms that establish the conditions under which clients,

whether external or internal to the business, can access the capabilities of the

service.

Business services encapsulated by electronic services benefit from additional

communication and provisioning channels, but further, they permit the auto-

mated coordination of capabilities, resources and information, both within and

between organisations. This gives rise to Electronic Service Systems (ESSs),

in which the services are integrated using auxiliary components such as work-

flow engines for coordination, databases to store knowledge about the state

of the enterprise, and Electronic Service Management Systems (ESMSs). We

characterise ESMSs here as combining the various capabilities of databases and

workflow engines to provide viewpoints and control of the enterprise to manage-

ment, citing experience of the HP Service Composer and the DySCo (Dynamic

Service Composer) research prototype.

The notion of a ‘business service’ enables the management within an enter-
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prise of ‘capabilities’ to deliver some benefit to a consumer. The term ‘capabil-

ity’ refers to the coordination of simpler tasks to achieve an end; the concept is

used to raise the level of abstraction when describing the way that a business

behaves. When describing business services, capabilities are divided into those

involved in ‘provisioning’ the service, and those providing the ‘content’ of the

service. The content of a service is the set of capabilities that deliver the benefit

of the service to the client. For example, the content of a freight service refers

to the capability of moving goods from one place to the other. Provisioning

refers to the business channel [15] between the provider and the consumer of a

service. In the example, provision covers selection, product offer, pricing, and

interaction processes that the freight company applies to its customers. Content

and provisioning are complementary aspects of a service. On the one side, the

provisioning logic depends on the capabilities that the provider can support.

On the other side, the capabilities made available to consumers depend on the

provisioning logic adopted by the provider. In the example, the option of deliv-

ery tracking might be made available only to selected customers. The example

is based on previous research in the freight domain [31].

Because business services require communication between the provider and

the consumer it is natural to provide interfaces to business services using commu-

nication technologies such as computer networks, and the software that supports

this such as middleware for distributed systems.

Middleware services and computing resources also provide the opportunity

to implement new business services with a highly automated content, and this is

an expected benefit of the electronic service model. However, despite the simi-

larities, our notion of electronic services should not be confused with middleware

services. Services must also be coordinated: Internally, to marshal the involved

capabilities and resources and establish the relationship between content and

provisioning; and externally, to manage the interaction between the service and

its clients and environment. This coordination requires a view of the behaviour

of a service. We therefore introduce an operational semantic for capabilities,

presented in Section 4.3. This semantic is broadly compatible with workflow

languages, suggesting that services could be both coordinated and enacted by

workflow engines.

Our semantic also describes abstractly the effect that activities have on the

information in their environment, for example the known locations of vehicles,

or statistics such as the total revenue for a service. Such information can have

a role in coordinating capabilities, and may be maintained and leveraged using

databases or other accounting mechanisms.
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There is also a need to manage the resources required by a service, which may

be the role of an Enterprise Resource Planning (ERP) application. Generally,

if electronic services are in place there will be the need and opportunity to

integrate them using a technical infrastructure. We introduce the notion of

an Electronic Service Management System (ESMS), informally defined as an

application that includes coordination, information and resource management

capabilities, providing business-oriented viewpoints and control over the services

that it manages.

IT technology trends and the service model for business provide the context

for electronic services. An enterprise adopting an electronic service strategy

would structure its business as services, provide interfaces to those services

using middleware technologies, coordinate and automate the services from a

workflow-oriented perspective and implement a technological infrastructure to

take advantage of the coordination and communication opportunities that are

the key benefit of the electronic service model.

5.2 The ESS meta-model

The ESS meta-model is divided into two packages as shown in Figure 5.1. These

partition the elements pertaining to services from those which represent manage-

ment applications. The management component metamodel naturally depends

on concepts from the service metamodel. The following sections present these

metamodels in detail.

Services Management

Figure 5.1: Subpackages within the ESS meta-model

5.2.1 The service meta-model

Figure 5.2 shows the part of the services meta-model related to the composition

of capabilities into services. The elements shown are now described:

Service An electronic service as described in Section 5.1. Services have any

number of provisioning capabilities, and a single top-level content capa-

bility (the capability to deliver the service). Services can be composed

of sub-services, in which case the content capability coordinates the con-

tent of each sub-service, and each sub-service must have a provisioning
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capability that makes a service offer to a role in the coordinating content

capability.

Capability A behaviour which realises some benefit to the business, described

by a workflow. The behaviour of capabilities is described formally in

Section 4.3. Informally, a number of roles perform actions and cooperate

to complete some task. Capabilities can be composed in a hierarchy. The

workflow of a coordinating capability constrains the order of tasks in the

component capabilities.

CapabilityRole A capability role identifies the behaviour of a worker or re-

source in a coordinated task. Capability roles can be assigned to actual

business entities as discussed below.

InformationItem An identifier for a piece of information about an enterprise

that is relevant to a task. Some workflow actions require information as

a prerequisite and produce or process information as by-product of their

enactment.

Observation Observations infer new information from existing information.

This captures the idea that not all derived information is produced by a

particular action. When the condition of the observation is satisfied then

new information may be introduced by the observation expression.

Constraints defined over the meta-model further reinforce these informal se-

mantics. For example, capabilities may not coordinate themselves. Constraints

are expressed formally using OCL [44]:
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dependentinput

1..*

output

1..*

0..*
subservice

1 1..*

actor

0..*

0..* output

consumer 0..*

0..*

producer

input

0..*

0..*

coordinator

components
composition

0..*

0..*

provisioned

provisioning

0..*

1

realised

content

InformationItem

+name:String

Service

+name:String
+external:Boolean
+enabled:Boolean

CapabilityRole

+name:String

Observation

+condition:String
+observation:String

Capability

+name:String
+workflow:String

Figure 5.2: Capabilities view of the services meta-model

context Capability

def :

let allCoordinators = self.coordinator→union(

self.coordinator→collect(c | c.allCoordinators))

inv:

not self.allCoordinators→exists(c | c = self)

Complementary to the abstract view of services are models of the business

assets in an enterprise, and their assignment to capability roles to realise a

service. Figure 5.3 shows the meta-model classes supporting such models.

BusinessEntity A business entity is a person, resource or system that can

fulfil one or more roles in a capability.

ServiceOffer A service offer is made to a capability role (typically that of

the ‘customer’). That capability role must be associated with one of the

provisioning mechanisms of the service.
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Figure 5.3: Implementation view of the services meta-model

ServiceImplementation ServiceImplementation captures the idea that busi-

ness assets can be assigned to capability roles in order to make a service

concrete. There is no explicit notion of service instance. However, if neces-

sary business assets can be grouped to show those relevant to a particular

scenario.

ITSystem An IT system is a computing system that can perform a role in

a capability. Electronic services are intended to provide integration and

automated coordination. This class allows the identification of the com-

ponents providing these services, possibly as a prelude to an MDA-style

development activity. Section 5.2.3 provides refinements of this stereotype

to identify likely management applications.

Additional classes not shown in Figures 5.2 and 5.3 are now discussed:

Property and HasProperties Properties capture different types of meta-

data about capabilities. Such meta-information mainly refers to functional

and non-functional requirements for a capability. For example, a property

for a negotiation capability is to be usable only with a certain type of

customers. The following classes inherit from HasProperties to enable the

attachment of properties: BusinessEntity, CapabilityRole, Capability and

Service. The properties mechanism maps onto the tagged-value mecha-
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nism in UML in the profile definition.

Group and Groupable Experience with the HP Service Composer revealed

the benefit of composing capabilities into loosely-grouped higher-level ag-

gregates called ‘clusters’, in which capabilities exhibited functional over-

laps, dependencies, mutual ownership or other subjective similarities. There

is also often the need to group services into related offerings or ‘service

packs’. Finally, as stated above, a grouping mechanism addresses the lack

of a concept of service instance by allowing the association of business

entities that actually cooperate (since more than one entity can enact a

given service role). Group and Groupable provide a single mechanism for

hierarchical grouping. The following elements inherit from Groupable, and

hence may appear in a Group: CapabilityRole, Capability, BusinessEn-

tity, InformationItem, Service and Group. Grouping is implemented by

UML’s package mechanism in the profile definition.

5.2.2 Formal semantics for the service meta-model

In this section we formalise notions of information and coordination for capabil-

ities, using the Structured Operational Semantics (SOS) style of [50], in which

inference rules define the structure of a Labelled Transition System (LTS) inten-

tionally. This definition contributes to the semantics of the profile by empha-

sising the definition of capabilities as coordinated activities whose behaviour

is known, and by providing a high level constraint on workflow descriptions

taken as values for the meta-attribute Capability.workflow. Our formalism is

defined independently of specific workflow languages by omitting base cases for

our rules. Instead, we assume that the workflow language employed allows us

to make assertions such as:

〈Σ ∪ I, c〉 α:I→O−→ 〈Σ ∪O, c′〉 (5.1)

Meaning that a specific, isolated capability, c, in a system where the current

information is represented by Σ∪I, evolves to c′ after undertaking an action, α,

which causes some change, reflected by the transformation of the information I

to new information O.

Capabilities may evolve independently of each other, when not coordinated:

〈Σ, ci〉
α−→ 〈Σ′, c′i〉

〈Σ, {c1 . . . ci . . . ck}〉
α−→ 〈Σ′, {c1 . . . c′i . . . ck}〉

(5.2)
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Even when coordinated, capabilities may perform uncoordinated actions

(A(c) yields the set of actions that a process c can undertake):

〈Σ, ci〉
α−→ 〈Σ′, c′i〉 α /∈ A(cc)

〈Σ, cc[{c1 . . . ci . . . ck}]〉
α−→ 〈Σ′, cc[{c1 . . . c′i . . . ck}]〉

(5.3)

Coordinated actions may occur only when the coordinating process permits,

and when all capabilities that can perform them are ready to do so simultane-

ously:

〈Σ, cc〉
α−→ 〈Σ′, c′c〉 〈Σ, c1〉

α−→ 〈Σ′, c′1〉 . . . 〈Σ, ci〉
α−→ 〈Σ′, c′i〉 α /∈

⋃
cf∈F

A(cf )

〈Σ, cc[{c1 . . . ci} ∪ F ]〉 α−→ 〈Σ′, c′c[{c′1 . . . c′i} ∪ F ]〉
(5.4)

A capability may have multiple coordinators in the metamodel. The in-

terpretation of this is that the capability is a subcapability of its coordinator.

It is therefore replicated for each coordinator. Shared sub-capabilities are not

synchronized.

Note that an action may require certain information to be present and sat-

isfy some condition before the action can be performed. Hence, coordination

by shared memory is also possible for capabilities. Under the electronic ser-

vice model, provisioning and content capabilities are not explicitly coordinated,

hence this mechanism links these capabilities for a service. The provisioning

capabilities create conditions under which the content capabilities are enabled.

Information in the system may arise naturally from the occurrence of actions.

However, the progress of the system may depend on broader observations than

those made in the context of a particular action. Hence we enable the modelling

of observations that derive new information from that already present in the

system:

〈Σ ∪ I, Γ〉 ∧ ∃o : I → O ∈ Ω

〈Σ ∪ I ∪O, Γ〉 (5.5)

We do not prescribe the language used to specify observations. OCL would

be a good candidate. The information prerequisites for the observation could

be captured by a boolean expression, and then let-clauses could introduce new

information. Note that it is possible to specify observations that lead to incon-

sistencies in the system information. Modellers should try to avoid this. One

strategy for dealing with this is to rule that if multiple values can be derived

51



for an information item then the value of the information item is not known.

However, in systems where action is preferable to inaction, this may not be safe.

For the purposes of assigning work the underlying workflow language must

also associate actions with roles, although this association is not required in this

discussion of coordination, as we assume that coordination is independent of the

entities that implement roles. That is, an entity will eventually be capable of

enacting all actions required of it during the evolution of the system.

The benefit of a formal semantic based on an LTS are in terms of simulation

and analysis. A tool such as LTSA [32] can provide scenario-based validation

of models. This can be used to assert safety conditions, fairness and liveness

conditions, and to ensure the absence of deadlocks (presumably arising from ca-

pabilities failing to establish adequate preconditions for their successors). The

use of information for coordination complicates such models, and can increase

their state-space beyond feasibility. However, reasonable abstractions can usu-

ally be found.

5.2.3 The management meta-model

The management meta-model shown in Figure 5.4 allows the identification of

common management components and their relationship to electronic services.

We have not included modelling functional or structural relationships between

management components as this is out of scope of our discussion of electronic

services. However, such modelling is necessary and is supported by the full

expressive power of the UML, possibly augmented by other profiles such as the

EDOC profile [40].

ESMS An application offering a enterprise-oriented management view of an

electronic service environment. For example, the HP Service Composer [16],

or the DySCo research prototypes [49]. Other candidate technologies

might be an application service offering a middle-tier of business logic,

with a web-server providing the management interfaces.

WfMS A workflow management system, either embodying a capability (enact-

ment) or coordinating a number of subcapabilities. Examples of workflow

applications are IBM’s MQ-Series Workflow [17] and PeopleSoft’s [47] Peo-

pleTools and Integration Broker.

ERPS An Enterprise Resource Planning System, dedicating to coordinating

entities in the system, presumably making them available to fulfil capa-

bility roles. We do not consider resource planning in this paper, although
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Figure 5.4: The management meta-model

it interacts at a functional level with coordination based on capabilities,

and future work may provide a combined modelling approach. Examples

of ERP systems are SAP’s mySAP [53] and Baan’s iBaan [3].

Database Most enterprises use databases to store information about the en-

terprise. Establishing a relationship between the (conceptual) informa-

tion items and the databases that store them allows a modeller to check

whether the information required by a business entity to fulfil a capabil-

ity role is available in its context. Popular databases are Oracle [45] and

MySQL [35].

5.3 The ESS Profile

The following tables relate elements in the meta-model to profile elements and

elements in the UML meta-model.

All name attributes in the meta-models map to the name attribute of the

class element in the UML meta-model. All associations in the meta-model

53



Meta-model element Stereotype UML base class Parent Tags

Service Service Class – external

enabled

Service.content content AssociationEnd – –

Service.provisioning provisioning AssociationEnd – –

Service.component component AssociationEnd – –

Capability Capability Class –

Capability.input input AssociationEnd – –

Capability.output output AssociationEnd – –

CapabilityRole CapabilityRole Class – –

InformationItem InformationItem Class – –

Observation Observation Class – condition

observation

Observation.input input AssociationEnd – –

Observation.output output AssociationEnd – –

BusinessEntity BusinessEntity Class – –

ServiceOffer ServiceOffer Class – enabled

ServiceImplementation Fulfills Association – service

ITSystem ITSystem Class BusinessEntity –

ESMS ESMS Class ITSystem –

WfMS WfMS Class ITSystem –

WfMS.actor wfactor AssociationEnd – –

WfMS.enacts enacts Class – –

WfMS.coordinated coordinates Class – –

ERPS ERPS Class ITSystem –

Database Database Class ITSystem –

Table 5.1: Stereotypes in the ESS profile

map to associations in models. Stereotypes on AssociationEnds are used to

disambiguate associations where more than one exists between the same two

meta-model elements. The meta-model constraints also have translations into

constraints on the profile elements, and additional constraints reflect the struc-

ture of the original meta-model. For example, the ‘Fulfills’ stereotype can only

be attached to an association between a CapabilityRole and a BusinessEntity,

and its service tag must always be present:

package Foundation::Core

context Association

inv:
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Meta-model element Tag Stereotype Type Multiplicity

Service.external external Service Boolean 0..1

Service.enabled enabled Service Boolean 0..1

Capability.workflow workflow Capability String 0..1

Observation.condition condition Observation String 1

Observation.observation observation Observation String 1

ServiceImplementation.service service Fulfills Class 1

BusinessEntity.external external BusinessEntity Boolean 0..1

ServiceOffer.enabled enabled ServiceOffefr Boolean 0..1

Table 5.2: Tags in the ESS profile

self.stereotype→exists(“Fulfills”) implies

self.connection.participant.stereotype→exists(“CapabilityRole”)

and

self.connection.participant.stereotype→exists(“BusinessEntity”)

and

self.taggedValue.type→exists(name = “service”)

5.4 Example

We now present an example of the profile in use to model a freight moving

service, based on previous research in the freight domain [31]. This example

was also used to demonstrate the HP service composer.

Figure 5.5 shows the freight service and the capabilities that support it.

The service is provisioned by a tendering capability. This service bids in a

reverse auction. Simultaneously it coordinates resources required for the freight

movement. Resource are traded in an online market in order to drive down the

overhead of the transport. Details of this process are covered by the workflow

description for these capabilities, not shown here.

A successful tender resorts in a move order. This is an example of informa-

tion in the ESS. The workflow order is stored in the orders database. The profile

combines conceptual and deployment elements, such as information items and

databases to combine a logical view of the ESS with the underlying resources.

Each capability has an associated workflow description. The workflow for

the handover capability is shown using an informal notation. The role names

present correspond to associated capability roles.

The combination of conceptual view and resource view is also in evidence in
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Figure 5.5: Services and capabilities in the Freight-mover example

Figure 5.6. This model shows the association of commercial entities with the

roles associated with the handover capability.

5.5 Related work

The definition and characteristics of the ESS model derive substantially from the

experience of HP Service Composer. UML notation is used in the HPSC, with

a separation between platform-dependent and platform-independent models of

an electronic service. Workflow notation and technology is used to model and

manage the business logic of a service.

The ESS model is also closely related to the DySCo (Dynamic Service Com-

poser) [49] research prototype. DySCo is the result of a two-year project involv-

ing University College London (UK), the University of St. Petersburg (Russia),

the University of Ferrara (Italy), the University of Hamburg (Germany), and

Hewlett-Packard (UK and USA). The objective of DySCo was the develop-

ment of a conceptual and technology framework for the dynamic composition

of electronic services. While lacking direct support for UML, DySCo provides
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Figure 5.6: Resource planning in the Freight-mover example

modelling facilities for workflows and a homogeneous execution platform for an

ESMS.

An electronic-services model is currently being used in the context of the

EGSO (European Grid for Solar Observations) [4] project. The model-driven

approach to the architecture of the service provision part of the EGSO grid is

expected to address the need to integrate services based on different provision

models and execution platforms. Each service provider in the EGSO grid will

be equipped with an ESMS. In addition, a specific ESMS federates and manages

the service provisioning capabilities of the overall EGSO grid.

The Enterprise Collaboration Architecture (ECA) defined in the OMGs

EDOC specification [40] provides a comprehensive framework for the modelling

of enterprise systems. The ESS profile introduces enterprise system compo-

nents that can be designed based on the ECA, and provides a means to model

features peculiar to electronic services that are not explicitly addressed by the

ECA. Similar considerations apply for the Reference Model for Open Distributed

Processing (RM-ODP) [19], which is also closely related with the ECA.

Most technology and conceptual frameworks for electronic services [25] focus
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on web-service-based automation of the front-end of individual services. Web

Services [8, 10] constitute the reference model for access to and basic orchestra-

tion of business resources. We envision Web Services playing a fundamental role

in the realisation of electronic services. Still, a more comprehensive approach

is needed for the realisation and operation of business-level services. An exam-

ple of the issues involved in the realisation of business-level service is HiServs

Business Port [23]. FRESCO (Foundational Research on Service Composition)

[50] provides an example of second-generation framework for electronic service

management. The focus of FRESCO is on the provision aspects of services.
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Chapter 6

Conclusions and Future

Work

6.1 Conclusions

In this document we have presented an overview of our approach to service

composition and analysis. The method relies on the integration of analysis

methods, representations of QoS aware systems, and SLA specifications in UML

design tools. This places all the information required to reason about service

composition and analysis in a single repository. The reasoning itself is supported

by model transformations between design and analysis models, performed within

the same repository. This enables a powerful and flexible approach to analysis.

We have also demonstrated the use of UML and OCL to precisely define the

meaning of service-level agreements in our language SLAng. This significantly

enhances the utility and credibility of the language.

Finally, through the example of electronic service systems we have provided

an example of the modelling of a service architecture in order to support the

development of such systems according to an MDA approach. We feel that this

approach is complementary to the TAPAS project, and believe that applying

such a modelling effort to the TAPAS architecture once finalised will yield both

concise documentation of the architecture and valuable modelling support for

its adopters.
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6.2 Future Work

6.2.1 Analysis of designs

In Chapter 3 we presented a general framework for associating analysis models

with designs. The analysis models exhibit the vocabulary and structure of par-

ticular mathematical formalisms, for example, queuing networks, Petri-nets or

Bayesian networks. Each formalism is appropriate for determining a few QoS

properties, such as performance or reliability. The design models potentially

incorporate architectural features, such as the profile elements introduced in

Chapter 5 for electronic-service systems, the EJB profile [20], or the EDOC

profile [40]. Clearly the benefit of the approach depends on establishing map-

pings between as many architectures and analysis models as possible.

Estabilishing a mapping that is guaranteed to produce valid and feasible

analysis models for a particular architecture is a significant challenge, as dicussed

in Section 3.3. We will therefore focus on providing the most useful analyses

for the most relevant architectures. Candidates for future investigation will

be an investigation into the performance and reliability of EJB servers, and

the modelling of similar properties for the TAPAS architecture. As previously

stated, the TAPAS architecture should be designed in such a way to provide

easily predictable QoS characteristics.

6.2.2 SLAng

SLAng is an evolving language. The related work section highlights desirable

features of previous SLA languages that SLAng could benefit from incorpo-

rating. These include: Payments related to service violations; reuse features,

including SLA templates, clause reuse and generalisation hierarchies; the speci-

fication of management actions, performed in response to QoS state changes or

SLA violations; the ability to define new parameter types in terms of existing

types; the ability to distribute clauses to third parties without exposing sensitive

details of the client and server; and the ability to define dynamic relationships

between service levels, effectively defining the permissible states for a system

capable of adapting its QoS behaviour.

These features would enhance the utility and usability of the language with-

out modifying the semantic definition of the underlying parameters, although

potentially requiring extensions to the existing semantics. Additional work will

further realise the value of the semantic definition: By automating consistency

checking of SLAs; by implementing application monitors that rely on the def-

inition of SLAs to assess conformance to SLAng terms; by defining additional
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relationships between SLAs, and automating their comparison; and by investi-

gating methodologies and designs for systems governed by SLAng SLAs.

6.2.3 Modelling the TAPAS architecture

It is our intent to apply the approach described in Chapter 5 to develop both a

normative model of the TAPAS architecture and a modelling language based on

that domain. Components of the domain will be architectural components from

the TAPAS platform, protocol elements required to negotiate service usage and

business elements supporting service composition. The intent of the modelling

language will be to support the planning and development of trusted and QoS

aware systems according to an MDA development strategy.

6.2.4 General

Our method relies on extending UML with a variety of domain specific languages

each appropriate to a modelling task, for example, performance analysis or the

representation of SLAs. Each language is defined seperately, but the common

basis in UML permits the integration of all of these models into a coherent view

of the system.

Each language has semantic information associated with it. SLAng, the pro-

file for electronic service systems, and the real-time profile used as the starting

point for analysis, all have rich semantic models. Other languages such as the

profile for queuing networks have a definition based in mathematical formalisms.

We also define relationships between our language extensions. The mappings

introduced in Chapter 3 relate analysis models to design domains. The corre-

spondance stereotype introduced in Chapter 4 allows the association of QoS

information of different types.

As the method is developed, there will be an increasing need to manage the

interactions between domain specific languages. Our future research in this area

is aimed at producing a approach to integrating multiple design languages in or-

der to ensure the consistency of designs with respect to the semantic definitions

of the languages and their inter-relationships.
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