
SLAng: A Language for Defining
Service Level Agreements?

D.Davide Lamanna, James Skene and Wolfgang Emmerich

Department of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
{D.Lamanna |J.Skene |W.Emmerich }@cs.ucl.ac.uk

Abstract. Application or web services are increasingly being used across or-
ganisational boundaries. Moreover, new services are being introduced at the net-
work and storage level. Languages to specify interfaces for such services have
been researched and transferred into industrial practice. We investigate end-to-
end quality of service (QoS) and highlight that QoS provision has multiple facets
and requires complex agreements between network services, storage services and
middleware services. We introduce SLAng, a language for defining service level
agreements that accommodates these needs. We illustrate how SLAng is used
to specify QoS in a case study that uses a web services specification to support
the processing of images across multiple domains in a quality of service aware
manner. We evaluate SLAng based on the experience gained from this case study.

1 Introduction

The term ‘electronic business’, or ‘e-business’, refers to the execution of transactions
of commercial significance in a distributed computing context. Such transactions may
involve an organisation, its clients and its partners, or they may be internal to an organ-
isation, integrating separate computational assets.

E-business is impeded by technical integration barriers. Recently, standardisation
processes have begun to catch up with commercial development and functional integra-
tion is being enabled by two forces: Standardisation of component-based middleware
architectures, and standardisation of communication protocols, particularly those based
on Internet communication protocols and data formats. These technologies are com-
plementary, and when employed in a client/server situation their use is often termed
Application Service Provision (ASP) or web-service provision, if HTTP is used as the
underlying transport protocol.

Functional integration may also include the provisioning of infrastructure by one
organisation for another, as in the case of Internet Service Provisioning (ISP), Storage
Service Provisioning (SSP) and application hosting. This provisioning relies on the use
of standardized and established architectures and technologies.

? This work is partly funded through the EU IST Project 34069 (TAPAS) and Kodak.

2 D. Lamanna, J. Skene and W. Emmerich

Unfortunately, combining functionality is not the only requirement for e-business
integration. Non-functional, quality requirements must also be met. Moreover, busi-
nesses must initially meet, negotiate the terms of their collaboration, have some confi-
dence that the services that they purchase will meet their requirements, and that they in
turn can meet their client’s expectations. Efforts have been made to establish business-
to-business marketplaces, in which application services can be traded, and we review
these in Section 2. Our work stands in the context of these efforts, but addresses the
need for description and negotiation of Quality of Service (QoS) properties.

The novel contribution of this paper is a reference model for inter-organisational
service provision at storage, network, middleware and application level. The model
provides the basis for the definition of SLAng, a language for Service Level Agreements
(SLAs). SLAs capture the mutual responsibilities of the provider of a service and its
client with respect to non-functional properties. Our language SLAng meets multiple
objectives: It provides a format for the negotiation of QoS properties; the means to
capture these properties unambiguously for inclusion in contractual agreements; and a
language appropriate as input for automated reasoning systems or QoS-aware adaptive
middleware. We have evaluated the expressiveness of SLAng using a case study that
supports the QoS-aware implementation of web services for image processing.

The remainder of this paper is structured as follows: In Section 2 we review related
work; in Section 3 we discuss our approach and present our reference model for inter-
organisational service provision and use; in Section 4, we present SLAng in detail; in
Section 5 we describe a case study in which SLAng was used to capture QoS respon-
sibilities shared by components of the CPXe application; Section 6 critically evaluates
SLAng and in Section 7, we summarise our contributions and discuss future directions
for our research.

2 Related work

A large number of industry standards have emerged that support the construction of
distributed systems using web services and distributed component technologies, such
as the Java 2 Enterprise Edition or the CORBA Component Model. These include
WSDL and SOAP [10] for defining interfaces to web services, BPEL to define busi-
ness processes and ebXML to define electronic business transactions. Figure 1 shows
an overview of these standards [1] and how our language SLAng for service level agree-
ments complements them. SLAng goes beyond them as it not only provides descriptions
of quality at the application level, but also contractual agreements that are necessary
when different ISO/OSI layers of a deployment are spread across multiple organiza-
tions.

The ISO/ODP trading function [2] and its various incarnations, for example the
CORBA Trading Service [9] provide for quality of service definition. However, such
traders define QoS at a single level of abstraction. Conversely, we allow for appropri-
ate QoS definitions at different levels of abstraction, including the network level, the
middleware level and the application level.

Significant research about QoS management and QoS-aware networks has been car-
ried out by the TEQUILA project [8]. TEQUILA specifies and implements a set of

SLAng 3

BPSS
ebXML

ebXML

ebXML
CPP

CPA

WSCL

BPEL

Contracts/
agreements

Private
process

Public

process
collaborative

Service
description

description
Endpoint

QoS
definition

SAMLSecurity

WSEL

SLAng

SLAng

WSDL

Fig. 1.e-Business automation standards

service definition and traffic engineering tools to obtain quantitative end-to-end QoS
guarantees at the network layer through careful planning, dimensioning and dynamic
control of scalable and simple qualitative traffic management techniques within the In-
ternet, such as differentiated services [4]. Their Service Level Specification proposal
submitted to the Internet Engineering Task Force (IETF) is one of our starting points
since we assume an SLS expressed with the parameters proposed in [8] for SLAs re-
garding networking services. The IETF are developing protocols and mechanisms for
negotiating, monitoring and enforcing SLSs, and to ensure that the network can cope
with the contracted SLSs. The efforts of the IETF, though, are based at the socket level
(which only includes communication resources) rather than at the distributed object
level (which includes communications, processing, and storage resources). As such,
they cannot address end-to-end QoS issues at higher levels of abstraction.

For QoS-aware middleware, related work has been done by the Quality Objects
(QuO) group ([7], [6]). QuO is a framework for providing QoS in network-centric dis-
tributed applications, ranging from embedded applications to wide area network appli-
cations. QuO bridges the gap between the socket-level QoS being specified, researched,
and provided by a number of organizations and the distributed object level commonly
used to write distributed systems. QuO has the merit of having raised the level of ab-
straction for QoS specification, but it is still not sufficient to allow provision QoS ser-
vices given the diversity of distributed heterogeneous environments.

HQML (Hierarchical QoS Markup Language) [5], an XML-based specification lan-
guage, addresses this issue. HQML enhances distributed applications on the World
Wide Web with QoS capability. It allows the specification of all kinds of application-
specific QoS policies and requirements. A static mapping between application and re-
source level QoS parameters can then be performed by using HQML QoS Compiler.

We believe that it is not feasible to define end-to-end QoS by just considering one
technical domain (e.g., networking, middleware, ASP or applications). Also, SLAs have
so far largely been ignored for component execution and middleware in general.

4 D. Lamanna, J. Skene and W. Emmerich

3 Reference model

In this section, we outline the underlying assumptions for our research and then present
a reference model that provides the basis for our service level agreement language
SLAng.

3.1 Approach

We assume the use of components for assembly of distributed applications or web ser-
vices and hence assume the use of component oriented middleware. In particular, we
concentrate on specific, state-of-the-art application server technologies (J2EE, CORBA
Component Model). Of course not every distributed system can be captured this way.
For example, streaming systems, such as VIC (Video Conferencing Tool)1 or RAT (Ro-
bust Audio Tool)2, are excluded by this assumption. The class addressed by component
middleware is nevertheless extremely important as application server technologies are
extensively employed in e-Business and are used to host the components that provide
web services.

We associate QoS targets (e.g., performance, availability, reliability, etc.) with iden-
tifiable Application Service Provider (ASP) architectural elements, so that the estima-
tion of QoS parameters is informed by the structure of an application’s deployment.

Another key point is that QoS semantics of our language do not refer to an ASP
model as a whole. They are instead defined according to the diverse domains of the per-
formance properties. For example, the throughput of a database server and the through-
put of a component container server are quite different concepts: the former is defined
in terms of the query response time varying the number of active connections, the latter
in terms of the round-trip method invocations per second. They both contribute to the
overall QoS, but one should be able to control each of them separately and in a different
way before composing the results.

Similarly, QoS syntax can be very different depending on the reference domain.
Performance for an application using a web service is given by, mean completion time
for the service (sec), mean peak period latency (sec), successfully completed transac-
tions (%), whereas for an application hosting server using network facilities important
parameters include delay(ms), jitter(ms), packet loss(%), and bandwidth(Mbyte/sec).

Ultimately, QoS properties are dependent on the level of abstraction at which the
system is being described.

3.2 Service provision reference model

Figure 2 depicts our reference model for a distributed component architecture. The
nodes in the model are architectural components. The edges depict opportunities for

1 VIC is a video conferencing application developed by the Network Research Group at the
Lawrence Berkeley National Laboratory in collaboration with the University of California,
Berkeley.

2 Robust Audio Tool is a an open-source audio conferencing and streaming application by UCL
Network and Multimedia Research Group at University College London.

SLAng 5

service level agreements between two parties. The duplication of the traditional layered
architecture reflects our observation that service provision can occur at any level in
the architecture. Moreover, the model takes distributed deployment to the extreme in
that it assumes that different parties can be involved in using, developing and hosting
components as well as providing underlying resources, such as network connectivity
and storage for deployment.

Underlying
Resources

Application
Tier

Middle Tier

WS

Appl. Appl.

WS

Components

Web Server

Container

Storage

Network

Fig. 2.Service provision reference model

Applications are clients that use either components or web services to deliver end-
user services. Web services may be implemented by invoking components. Components
provide an abstraction of the underlying resources, enriching their functionalities via
middleware support. Containers host component instances and are responsible for man-
aging the underlying resource services for communication, persistence, transactions,
security and so forth, and for providing those to components.

In order to make such services QoS enabled, containers need support for QoS ne-
gotiation, establishment and monitoring. Container entities are depicted in Figure 2
immediately under component entities. In a business scenario, the role containers are
provided by ASPs, called upon to host (other parties’) application components.

The underlying resource tier includes network and storage service providers. An
ASP can hence interact with Storage Service Providers (SSP) and Internet Service
Providers (ISP), and contract specific agreements with them for the provision of ser-
vices and their related quality.

The architectural components depicted in the figure can each be owned by a seper-
ate organisation. Hence, each box can also represent a party of a bilateral business
agreement. For each possible SLA, we define a particular template, so that different

6 D. Lamanna, J. Skene and W. Emmerich

QoS parameters and attributes can be specified for every tier-specific and party-specific
SLA.

Vertical and Horizontal SLAs This architecture facilitates the definition of different
levels of abstraction for compiling SLAs. In addition to tier-specific differentiation, we
adopt another important SLA classification: Horizontal SLAs govern the interaction
between coordinated peers, whereas Vertical SLAs between subordinated pairs, within
the service provision architecture stack. Intuitively, they are represented in Figure 2 as
horizontal and vertical arcs.

HorizontalSLAs are contracted between different parties providing the same kind
of service. For example, two container providers can collaborate for replicating compo-
nents.Vertical SLAs regulate the support parties get from their underlying infrastruc-
ture. For example, a container provider can define an agreement with an ISP for network
services. Once again, the resulting types of SLA differ in terms of their expressiveness,
and SLAng defines them separately.

Crossing organisational boundaries The SLAng reference model is structured to
handle every possible combination of business interactions. Obviously, organisational
boundaries can include more than one box in Figure 2, thus resulting in diverse roles
included in a single competence domain.

A Competence Domainis a non-empty set of abstractions, representing a business
party for a particular e-business collaborative process. The party can sign SLA con-
tracts with parties providing other competence domains. Nothing prevents a business
party from being represented by several competence domains for different e-business
agreements, providing flexibility for business-to-business interaction.

4 SLA definition language (SLAng)

A service level agreement is an arrangement between a customer and a provider, de-
scribing technical and non-technical characteristics of a service, including QoS require-
ments and the related set of metrics with which provision of these requirements is being
measured.

The first goal of an SLA definition language is to provide the capability to express,
with the maximum degree of accuracy, the qualitative and quantitative features of a
service. Through such a language, e-business parties can rapidly and precisely formu-
late the level of a service while offering it. Furthermore, it is convenient to refer to a
standard, which everyone is able to use and understand.

Other relevant achievements are the possibility to easily make comparisons between
offers, to advertise and retrieve information about them, to reason about service propos-
als, understanding what one can offer and expect to receive, and to easily monitor QoS
guarantees, both for fulfilling and claiming them.

The main requirements for achieving these goals we had in mind while developing
SLAng were parameterisation, compositionality, validation, monitoring and enforce-
ment:

SLAng 7

Parameterisation Each SLA includes a set of parameters, the values of which quanti-
tatively describe a service. For what we have stated previously, they have to be tier-
and actors-specific; hence, a set of parameters of a particular kind of SLA provides
a qualitative description of a service.

Compositionality In a multi-domain environment, a service can be the result of a coop-
eration between different domain entities. Services can be cascaded or aggregated
and, hence, service providers should be able to compose SLAs in order to issue new
offers to customers. An SLA language has to enable such composition.

Validation Before initiating an SLA, contractors have to be able to validate it, check
its syntax and consistency. Furthermore, validity should be verified as a result of a
composition.

Monitoring Ideally, parties should be able to automatically monitor the extent of which
the service levels set forth in an agreement are actually provided by its providers.
Likewise, a party should be able to deduce the extent with which it has met the ser-
vice levels it agreed to provide to its customers. SLAs should therefore provide the
basis for the derivation and installation of automated monitors that report extents
with which service levels are being met.

Enforcement Once service levels are agreed, network routers, database management
systems, middleware and web servers can be extended to enforce service levels in
an automated manner by using techniques such as caching, replication, clustering
and farming.

4.1 SLAng key concepts

SLAng is an XML language for capturing Service Level Agreements. In order to be
legally binding, an SLA has to be embedded in what is called SLA contract, i.e. a
framework containing one or more SLAs plus the names of the two juridical persons
contracting the agreement and possibly of a trusted third party, together with their digital
signatures (Figure 3).

Signatures

SLS

Contractual
statements

Endpoint
description

Contractor #1
Contractor #2
Trusted Third Party

SLA

SLA
contract

Fig. 3.SLA contract structure

XML proves ideal for parameterisation. Parameterisation of service level specifica-
tions is supported at different system tiers, including vertical and horizontal agreements.

8 D. Lamanna, J. Skene and W. Emmerich

In order to allow compositionality, we focus on interfaces. A service can be seen
as the result of performing a set of operations. An interface is a set of points of inter-
actions, through which the functionality of such operations can be accessed/provided
and, hence, it is located at the logical boundary between the user and provider enti-
ties/systems. Our effort is to add access and provision of non-functional characteristics
of service to service delivery interfaces.

Each party identified in our reference model is responsible only for its interfaces
with other parties, and the guarantees it assures are the outcome of the composition
of the guarantees it expects from other interfaces with parties it has agreements with.
A failure-clause mechanism regulates such a composition, so that compensation is the
result of cascading responsibilities.

In Section 3.2, we stated that an SLA contract can be signed by two competence
domains. Nothing prevents an organisation, though, from using SLAng within its own
boundaries and producing an internal chain of SLAs. Even if legal implications are not
relevant in this case, SLAng can still help the process of internal service-composition
modeling, so that an accurate SLA proposal can be offered to external business parties.
This can be very useful for widely distributed organisations which are, e.g, component
and container providers at the same time and want to use their own database facili-
ties. Moreover, once the service level is precisely determined, SLAng instances can be
inserted or transformed into standard component deployment descriptors, while deploy-
ing the service components.

4.2 SLAng structure

The SLAng syntax is defined using XML Schema. Using schemas favours the integra-
tion with existing service description languages. For example, SLAng can be combined
with WSDL and BPEL (all of which are defined using XML schemas) to obtain a com-
plete e-Business automation solution (see Figure 1). Moreover, one can take advantage
of a variety of existing XML tools and parsers. In this section, we analyse the structure
of our language.

The content of an SLA varies depending on the service offered and incorporates the
elements and attributes required for the particular negotiation. In general, it includes:

– An end-point description of the contractors (e.g., information on customer/provider
location and facilities)

– Contractual statements (e.g., start date, duration of the agreement, charging clauses,
rebates on SLA violation)

– Service Level Specification (SLS)s, i.e. the technical QoS description and the asso-
ciated metrics.

The latter is the challenging issue, because, as we said, performance guarantees
are difficult to precisely determine and maintain. They include availability, response
time, utilisation and other tier-specific QoS targets, all of which are the result of several
dependencies of a multi-domain service provision scenario.

SLAng 9

Fig. 4.Vertical and Horizontal SLAs

Kinds of SLA SLAng defines seven different types of SLA, four of which are vertical
and three horizontal. They regulate the possible agreements between the different types
of parties identified in our reference model, i.e.Application, Web Service, Component,
Container, Storage and Network.

Figure 4 shows the name of SLAs that can be contracted between pairs of them,
appropriately subdivided intoVertical andHorizontal agreements. The Vertical SLAs
are:

Application: between applications or web services and components,
Hosting: between container and component providers,
Persistence:between a container provider and an SSP, and
Communication: between container and network service providers.

The Horizontal SLAs that parties enter into by composing vertical SLAs are:

Service: between component and web service providers
Container: between container providers
Networking: between network providers

Responsibilities A common characteristic of every SLA is the definition of a relation-
ship of mutual responsibility between a client and a server, including technical annex.
Since they are bilateral agreements, a description of service client and server responsi-
bilities is needed.

10 D. Lamanna, J. Skene and W. Emmerich

Either in a business-to-customer or in business-to-business interaction, service pro-
vision and use are always involved and, consequently, charges and benefits of the two
parties have to be clearly stated. Some of them overlap; in SLAng these are termed
Mutual Responsibilities.

For each kind of SLA, then, a general structure is defined, including responsibilities
of the client of the service (Client), responsibilities of the service provider (Server) and
mutual responsibilities (Mutual) to be complied by both of them. This is represented in
Figure 5, where, just as an example, theCommunicationSLA pattern is shown (such a
subdivision, anyway, is repeated for every kind of SLA). This set of elements is com-
pleted byId, through which we can define service and SLA identifications, alphanu-
meric values used for reference purpose.

Fig. 5.General structure for an SLA

SLA-specific parameters Responsibilities are expressed in terms of end-point, con-
tractual and SLS parameters, which are specific to the type of SLA. Such parameters
are the leaves of the logical tree representation of SLAng schema.

Figure 6 shows an example with the responsibilities of the service provider (Server)
in a Hosting SLA. An analogous list of SLA parameters is provided for client and
mutual responsibilities as well, but they could not be included in the figure for reasons
of space.

An analogous pattern is, then, repeated for every kind of SLA. This can give an idea
of the dimensions of SLAng schema, but the full detail can not be reported in this paper.
We believe that there is much more significance to present the underlying concepts of
our research, leaving a detailed understanding of all the features provided by SLAng to
the free examination of its XML code.

The set of parameters, like the one depicted in Figure 6, is represented by simple-
type elements (boxes with a mark in the top left corner), or complex-type elements. The
latter are further specified in terms of an element-specific set of attributes.

SLAng 11

For example,Performanceattributes are mean response time in milliseconds, mean
processing speed in Megabytes per second, peak time latency in milliseconds, and per-
centage of transactions completed within a given performance level.

In Section 5, we present several examples of SLAs that were written in SLAng to
express QoS concerns of different parties involved in our case study.

5 Case study: CPXe

The Common Picture eXchange environment (CPXe) is an I3A3 initiative to develop
Internet-based digital photo services. CPXe is an architecture that links digital devices,
Internet storage and printing, and retail photo finishing together. It takes advantage of
Web Services technologies such as SOAP, WSDL and UDDI and supports a large num-
ber of scenarios for imaging applications that are distributed across a number of parties.

As shown in Figure 7, the CPXe architecture enables service providers to define,
develop and publish their services, and application providers to look for services and
implement interactions with them. They both make use of well-defined CPXe interfaces
and can additionally provide/use Service Locators to apply business rules, consumer
information and service properties to filter the list of services in the CPXe directory.

CPXe Applications can be categorized into in-home, on-line and in-store appli-
cations. They support Internet-enabled devices (e.g., cameras, phones, PDAs), kiosks,
desktop software, web applications and behind the counter applications, including mini-
lab applications.

Services are subdived into business-to-customer (B2C) and business-to-business
(B2B) services, where the former provide customers for access to the latter. The CPXe
Directory provides information about the owner of the service, its interface definition
and its location on the network. CPXe-service providers specify hardware, network and
software service definition entries, based on a CPXe service API template.

Several uses of CPXe can be accomplished. A typical one is enabling print services
from home, locating, via a desktop application, a fulfillment service, that manages the
order and send it to the nearest (or favourite) retail shop. Picture access from a retailer
application is also possible, using an in-store application that retrieves pictures from
an on-line storage and sets the fulfillment service proceeding. Also, one could upload
photos from a kiosk (connecting a digital camera to it) and order prints to a particular
retailer or even have them mailed to home.

5.1 Aggregation of services: implications

In order to appear to service requesters as having more capabilities than autonomously
provided, CPXe parties have to collaborate. This section highlights the issues con-
cerning multi-party cooperation which are relevant for our case study, and shows how
SLAng can provide SLA negotiation support to CPXe. This way QoS can be delivered
together with the service, both of them as a result of the business collaboration.

3 I3A is the International Imaging Industry Association, setting the standards for the digital
imaging markets.

12 D. Lamanna, J. Skene and W. Emmerich

Fig. 6.Responsibilities of the server in aHostingSLA

SLAng 13

Services
Directory

Fulfillment
Access Access

Storage Sharing
Access

Order
Management

Credit
Guarantor

Bind
(SOAP,HTTP)

Any
Device

Kiosk
App

Desktop
App

Web
App

Retail
Counter

App

Minilab
App

Directory Layer

Service Layer

B2C

B2B Fulfillment Storage Locator Identification

Register(Publish)

Find

Application Layer

Fig. 7.CPXe Architecture

CPXe applications can either be totally integrated using web services, thus provid-
ing total consumer interaction, or stand alone. In the former case, they can further be
augmented by other CPXe applications. Applications can, then, locate services by ei-
ther interacting with CPXe directory itself, or by using another service, a smart locator,
that applies business specific filters.

These and other scenarios put in place collaborations that need to be regulated by
SLAs, whenever organisational boundaries are crossed. CPXe entities, then, can hold
different roles and possibly change them with respect to their partners. The bilateral and
compositional nature of SLAng SLAs supports this naturally.

At the B2C interface, access services to storage, fulfillment and sharing are pro-
vided. The associated applications are invoked by a consumer (e.g., via a browser) or
by another application (e.g., desktop or kiosk applications). An order management ser-
vice can be provided to them as well.

Fulfillment services are logically located at B2B interfaces, where properties of a
service can be set and orders can be placed, canceled, modified. Images can be pushed
from the requester, pulled from an on-line service or referenced in a CPXe-compliant
storage service.

Storage services are provided at B2B interface, as well. Digital media can be up-
loaded from customers (e.g., using digital cameras/scanner from home or from a kiosk)
or they can be digitalised and uploaded from minilabs equipment.

5.2 A possible scenario

Figure 8 presents one of four CPXe scenarios that we have analysed in detail. In order
to describe service composition, we have used our reference model notation (refer to

14 D. Lamanna, J. Skene and W. Emmerich

APP

WS

Storage
Access

Instore Retail
Application

Fulfillment

WS

ISPCPXe
Directory

APP

Web
Application Storage Storage

Storage

Storage

WS

WS

CPXeDir AOL

Photo Point Online Photolab

Fridge.com

eMemories

ASP
Guarantor

Credit

WebApp2Go.com Visa

Fig. 8.Picture access and printing

Section 3.2). SLAs are represented by arcs connecting two entities; a bullet is placed on
theServerentity side. Entities are differentiated based on their architectural role, stated
by an identifier mark over their box.

Competence domains are delimited by dashed line polygons. Every competence
domain contains the abstractions that a company is responsible for within an SLA;
the name of the company is put near its competence domain. Relationships between
entities in the same competence domain, are represented by a dotted line. We repeat
the statement that SLAng-generated SLAs within the same business boundaries can
help the process of internal service-composition modeling and external SLA-offering
(Section 4.1). SLAs with a legal value (SLA contracts) are those that cross domain
boundaries.

Our case-study scenario intends to show that choosing a business partner can be
based on choosing the best service level offer.Online Photolabis an application suite
intended for use in print shops (Figure 8). The retailer can connect and let their cus-
tomers connect to a storage service. In this way, customers can store images and even-
tually retrieve them while in a print shop, deciding to print a selection of them.

Photo Point, a web application which lets users discover CPXe services, findsOn-
line Photolabin CPXe-Dir. Online Photolablooks up a suitable storage service that will
be used both by the customer and by the retailer. In this casee-Memoriesis choosen,
because it ensures an availability rate of 95% and an incremental backup interval of 24
hours. This is stated in aServiceSLA.

Figure 8 provides a detailed description of thee-Memories Competence Domain, in-
cluding internal relationships between Web Services, Components and Container. Else-
where, e.g. for the credit guarantor, onlyWeb Serviceentities are depicted within a
competence domain. This can mean that the underlying infrastructure for service pro-
visioning belongs to the same business or, even simpler, that we do not represent other
possible business interactions, regulated by more SLAs. For example, noNetworking
SLAs are illustrated, even if they are likely to be in place. Service composition, indeed,

SLAng 15

allows us to focus only on service interfaces we are interested in and consider the others
as given.

e-Memoriesrelies onFridge.com, a SSP whose guaranteed mean query response-
time is 30ms and TTR (Time To Repair) 1 hour. Between them aPersistenceSLA is
stipulated.

Payments can be made using a Web Service provided byVisa, which authorizes
credit card transactions.Visaguarantees a transaction success rate of 99.2% and offers
a monitoring report frequency of 12 hours.

CPXe-Directory replication at an ASP,WebApp2Go.com, is further represented. Be-
tween them there is aHostingSLA. An EJB round-trip method invocation per second
of 53ms and availability rate of 99.6% are determined in this SLA.

A business relationship with an ISP,AOL, is also shown.AOL offers 2 Mbps of
bandwidth with 0.01% packet loss. The SLA betweenAOL andFridge.comis aCom-
municationSLA.

5.3 SLAs for the scenario

While presenting the case-study scenario, we discussed some performance parameters
offered by service providers. In each SLA there are several parameters and, just for
illustrative purpose, we cited one or two of them per SLA, the ones considered decisive
for choosing a certain provider. In this section, four full SLAs of those sketched in
Figure 8 are shown to convey the expressiveness of SLAng.

<?xml version="1.0" encoding="UTF-8"?>
<SLAng xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="dave/TAPAS/SLAng0_5/SLAng0_5.xsd">
<Horizontal>

<Service>
<Id sls_id="453A" service_id="storage"/>
<Client>

<Name>Online Photolab</Name>
<Place>Los Angeles</Place>
<Availability>96%</Availability>

</Client>
<Server>

<Name>e-Memories</Name>
<Place>Paris</Place>
<Availability>95%</Availability>
<Maintenance recovery_time="2" scheduled_outages="8" routine_maintenances="5"/>
<Backup solution="Softbackup" complete_backup_interval="72"

incremental_backup_interval="24" data_types="Log data" archiving_form="zip"
client_access="true" backup_encryption="true" individual_client_backup="true"/>

</Server>
<Mutual>

<Service_schedule start="2002-12-13" end="2010-12-13"/>
<Performance>

<Service_time average="7.3" maximum="16.9" minimum="4.6"/>
<Service_rate>26.7</Service_rate>

</Performance>
<Clients>3056</Clients>
<Security data_protection="true" encryption_method="RSA" certificate="true"

user_authentication="true" intrusion_detection="true" virus_scanning="true"
eavesdrop_prevention="true"/>

<Monitoring tracking_system="EHS Performance Tracking" report_method="XML"
report_frequency="24" reporting_on_demand="true" security_violations="true"/>

<Failure_clauses compensation="(100%-availability)*0.8"
exclusion_clauses="routine maintenances"/>

</Mutual>
</Service>

</Horizontal>
</SLAng>

Fig. 9.ServiceSLA between two Web Services

16 D. Lamanna, J. Skene and W. Emmerich

<?xml version="1.0" encoding="UTF-8"?>
<SLAng xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="dave/TAPAS/SLAng0_5/SLAng0_5.xsd">
<Vertical>

<Persistence>
<Id sls_id="fgh812g" service_id="image_storing"/>
<Client>

<Name>e-Memories</Name>
<Place>Paris</Place>
<Users mean_number="18400" maximum_number="35000" arrival_rate="174.4"/>
<Availability>99.6%</Availability>

</Client>
<Server>

<Name>Fridge.com</Name>
<Place>Houston, Texas</Place>
<Provision disk_space="400"/>
<Availability>97%</Availability>
<Reliability>90%</Reliability>
<Maintenance recovery_time="1" scheduled_outages="17" routine_maintenances="24"/>
<Query_response_time average="30" maximum="48" minimum="21"/>
<Data_integrity>97%</Data_integrity>
<Security encrypted_storage="true" encryption_method="DES" certificate="false"

user_authentication="true" intrusion_detection="true" virus_scanning="false"
eavesdrop_prevention="true"/>

<Backup solution="CommVault" complete_backup_interval="48"
incremental_backup_interval="12" data_types="all" archiving_form="tar"
client_access="true" backup_encryption="true" individual_client_backup="true"/>

<Monitoring tracking_system="RTS" report_method="XML" report_frequency="72"
reporting_on_demand="false" security_violations="false"/>

</Server>
<Mutual>

<Service_schedule start="2002-12-13" end="2005-12-13"/>
<Cpu_utilisation>75%</Cpu_utilisation>
<Memory_usage>80%</Memory_usage>
<Connection_entries>4967295</Connection_entries>
<Users>4294964225</Users>
<Failure_clauses compensation="(100%-availability)*2.8"

exclusion_clauses="routine maintenances"/>
</Mutual>

</Persistence>
</Vertical>

</SLAng>

Fig. 10.PersistenceSLA between a container provider and an SSP

6 Evaluation

Using an industrial case study, we have convinced ourselves that SLAng is expressive
enough to represent the QoS parameters required for the complete definition of inter-
faces in multi-party deployments. We have achieved this by exploiting the different
abstractions that we have identified in our reference model and by using abstraction-
specific parameters for the necessary interfaces.

We note that the SLAs at these different tiers are precise and having conducted
the case study, we can state that SLAng meets the requirements outlined earlier in this
paper. We also note that SLAng allows for fairly concise SLA specifications. There is
no service level agreement in the CPXe case study that is longer than 2 KBytes.

We also note that the fact that these SLAs are determined in an XML language has
turned out to have a number of advantages. Tools such as XML Spy or ECLIPSE are
available to edit and validate SLAs against the language specification. Moreover, we
can easily translate SLAs into other representations using XSLT style sheets [3]. We
have been able to transform SLAs into a more readable format that is more suitable
for inclusion in a service contract. Likewise some of these SLAs could be transformed
using XSLT style sheets into deployment descriptors for web servers or application
servers.

SLAng 17

<?xml version="1.0" encoding="UTF-8"?>
<SLAng xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="dave/TAPAS/SLAng0_5/SLAng0_5.xsd">
<Vertical>

<Hosting>
<Id sls_id="49258" service_id="Replication"/>
<Client>

<Name>CPXe-Dir</Name>
<Place>Los Angeles</Place>
<Clients mean_number="24000" maximum_number="40000" arrival_rate="113.2"/>
<Availability>95%</Availability>

</Client>
<Server>

<Name>WebApp2Go.com</Name>
<Place>London</Place>
<Provision disk_space="500" memory_usage="512"/>
<High_availability>99.6%</High_availability>
<Maintenance recovery_time="2" scheduled_outages="20" routine_maintenances="12"/>
<Performance response_time="2.6" peak_time_latency="4.7"

successful_transactions="98%" processing_speed="843"/>
<Cluster_throughput containers="9" active_clients="310" method_invocation="53.141"/>
<Security data_protection="true" encryption_method="RSA"

certificate="true" user_authentication="true" intrusion_detection="false"
virus_scanning="true" eavesdrop_prevention="false"/>

<Backup solution="REOBack" complete_backup_interval="24"
incremental_backup_interval="6" data_types="User configuration data" archiving_form="rar"
client_access="true" backup_encryption="false" individual_client_backup="true"/>

<Monitoring tracking_system="IDX System" report_method="XML" report_frequency="48"
reporting_on_demand="false" security_violations="false"/>

</Server>
<Mutual>

<Service_schedule start="2002-12-13" end="2003-12-13"/>
<Failure_clauses compensation="(100%-availability)*4.6"

exclusion_clauses="Client caused outages"/>
</Mutual>

</Hosting>
</Vertical>

</SLAng>

Fig. 11.HostingSLA between a component provider and an ASP

<?xml version="1.0" encoding="UTF-8"?>
<SLAng xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="dave/TAPAS/SLAng0_5/SLAng0_5.xsd">
<Vertical>

<Communication>
<Id sls_id="357BN" service_id="FracT3"/>
<Client>

<Name>e-Memories</Name>
<Place>Paris</Place>
<Usage arrival_rate="14.2" MTU="1024" access_link_limitation="50%"/>
<Availability>99.6%</Availability>

</Client>
<Server>

<Name>AOL</Name>
<Place>Connecticut</Place>
<Maintenance recovery_time="1" scheduled_outages="6" routine_maintenances="12"/>
<Reliability downtime="20"/>
<Performance_guarantees delay="2.3" jitter="0.7" packet_loss="0.01%" bandwidth="2M"/>
<Security firewall="true" firewall_system="NetBSD" user_authentication="true"

intrusion_detection="true" ipsec="true" eavesdrop_prevention="false"/>
<DiffServ_level>010100</DiffServ_level>
<Monitoring tracking_system="EHS Performance Tracking" report_method="XML Document"

report_frequency="3/week" reporting_on_demand="true" security_violations="true"/>
</Server>
<Mutual>

<Service_schedule start="2002-12-13" end="2004-12-13"/>
<Failure_clauses compensation="(100%-availability)*1.2"

exclusion_clauses="Client caused outages"/>
</Mutual>

</Communication>
</Vertical>

</SLAng>

Fig. 12.CommunicationSLA between container provider and an ISP

18 D. Lamanna, J. Skene and W. Emmerich

While conducting the CPXe case study we also noted, however, that further work
is necessary on the definition of the semantics of SLAng. Right now, the semantics are
defined informally, which has turned out to be a weakness. Instead, it will be neces-
sary to underpin at least some of the definitions, such as latency or throughput of SLA
parameters with a more formal semantic model.

7 Conclusion and Further Work

SLAng can specify tier-specific horizontal and vertical SLAs between service users and
providers. It is easily extensible to increase expressiveness and combinable with flour-
ishing e-Business automation technologies. It allows engineers to integrate the spec-
ification of non-functional features (service levels) of contracts between independent
parties with the functional design of a distributed component system for service provi-
sioning.

We will continue to use SLAng to model and reason about SLA composition,
analysing its implications. Using an XML-based representation of SLAs provides the
possibility of using specialised UML tools for software performance engineering de-
sign.

On our agenda there is a study of the benefits of inserting SLAng instances into
standard XML-based deployment descriptors, to make components hosting QoS-aware.
We also intend to test the effectiveness of SLAng for monitoring compliance to SLAs.

Future work includes also the development of a toolkit for service composition and
analysis to assist ASPs in determining what SLAs they can undertake to meet. Model
checking techniques could be prove appropriate in this context [11].

Acknowledgements

We would like to thank Jon Crowcroft, Fabio Panzieri, Nicola Mezzetti, Werner Beck-
mann and Santosh Shrivastava together with all TAPAS partners for the fruitful discus-
sion that helped us to refine SLAng. We are indebted to Karen Lawson for drawing our
attention to CPXe.

References

1. S. Aissi, P. Malu, and K. Srinivasan. E-business Process Modeling: The Next Big Step.
Computer, 35(5), May 2002. Innovative technologies for computer professionals.

2. M. Bearman. ODP-Trader. InProc. of the IFIP TC6/WG6.1 Int. Conf. on Open Distributed
Processing, Berlin, Germany, pages 341–352. North-Holland, 1993.

3. J. Clark. XSL Transformations (XSLT). Technical Report http://www.w3.org/TR/xslt, World
Wide Web Consortium, November 1999.

4. R. J. Gibbens, S. K. Sargood, F. P. Kelly, M. Azmoodeh, R. Macfadyen, and N. Macfadyen.
An approach to service level agreements for IP networks with differentiated services. Tech-
nical report, Statistical laboratory, University of Cambridge, January 2000.

5. X. Gu, K. Nahrstedt, W. Yuan, D. Wichadakul, and D. Xu. An XML-based Quality of
Service Enabling Language for the Web. Technical report, Department of Computer Science,
University of Illinois, April 2001.

SLAng 19

6. Y. Krishnamurthy, V. Kachroo, D. A. Karr, C. Rodrigues, J. P. Loyall, R. E. Schantz, and
D. C. Schmidt. Integration of QoS-Enabled Distributed Object Computing Middleware for
Developing Next-Generation Distributed Applications. InProceedings of the ACM SIG-
PLAN Workshop on Optimization of Middleware and Distributed Systems, Snowboard, Utah.
(OM 2001), June 2001.

7. J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken. Specifying and Measuring Quality
of Service in Distributed Object Systems. InProceedings of the First International Sym-
posium on Object-Oriented Real-Time Distributed Computing. (ISORC ’98), April 1998.
Kyoto, Japan.

8. G. Memenios, G. Pavlou, D. Griffin, and L. Georgiadis. Service Level Specification Seman-
tics and Parameters. Internet Draft, tequila-sls-02, February 2002.

9. Object Management Group.CORBAservices: Common Object Services Specification, Re-
vised Edition. 492 Old Connecticut Path, Framingham, MA 01701, USA, December 1998.

10. S. Seely.SOAP: Cross Platform Web Service Development Using XML. Prentice Hall PTR,
2002. ISBN: 0-13-090763-4.

11. J. Skene and W. Emmerich. Model Driven Performance Analysis of Enterprise Computing
Systems. Research note, UCL Dept. of Computer Science, December 2002. Submitted for
publication.

