
1

TAPAS
IST-2001-34069

Trusted and QoS-Aware Provision of Application Services

Using the JBoss Clustering Service
in the TAPAS Platform

Report Version: 0.1
Report Delivery Date: (this is not a deliverable)
Classification: Internal report. Draft for comments only. Please do not circulate.
Contract Start Date: 1 April 2001 Duration: 36m
Project Co-ordinator: Newcastle University
Partners: Adesso, Dortmund – Germany; University College London – UK;
University of Bologna – Italy; University of Cambridge – UK

Project funded by the European Community
under the “Information Society
Technology” Programme (1998-2002)

2

Using the JBoss Clustering Service
in the TAPAS Platform

Giorgia Lodi, Fabio Panzieri
University of Bologna

Department of Computer Science
Mura A. Zamboni 7
I – 40127 Bologna

{lodig|panzieri}@cs.unibo.it

Abstract

The JBoss application server provides its users with a clustering service that implements load
balancing and failover mechanisms, within a JBoss cluster. In this report we discuss the use
of this service in the implementation of the TAPAS Platform.

Introduction

The TAPAS platform incorporates a so-called Configuration Service [1], responsible
for constructing, and maintaining at run time, the hosting environment within which
distributed applications can be deployed and run.

For the purposes of this Report, we shall assume that an Application Service
Provider (ASP) provide its customers with a complete application hosting
environment which can fully host the applications those customers wish to run (i.e.,
we assume a possibly simplistic scenario in which no additional providers, such as an
Internet Service Provider or a Storage Service Provider, are involved). This hosting
environment may consist of a cluster of interconnected machines, governed by
possibly heterogeneous operating systems; each machine in that cluster runs an
instance of the JBoss application server.

Within this scenario, the TAPAS Configuration Service exercises control over
both the internal configuration of each application server instance, in the application
hosting environment, and the set of clustered server instances that form this
environment.

Hence, this Service can be thought of as operating at two distinct levels of
abstraction, that we term micro-resource and macro-resource levels, respectively.
The former level consists of resources, such as server queues and thread pools,
internal to each individual application server; the latter level consists of such
resources as the server instances that form the application hosting environment.

Thus, for example, the Configuration Service at the micro-resource level may
have to adjust dynamically an application server queue length, in order to allow that
server to deal with particularly demanding load conditions, and to maintain its
responsiveness. In contrast, in order to meet possible load balancing and
responsiveness requirements at the macro-resource level, the Configuration Service
may have to extend the cluster configuration by enabling a new application server
instance, or to replace a crashed application server instance with an operational one, at
application run time.

3

In this Report we discuss the use of the JBoss clustering service in the
implementation of those Configuration Service functionalities operating at the macro-
resource level.

This Report is structured as follows. The next Section summarizes the principal
features of the JBoss clustering service. Section 3 describes how those features are
related to the implementation of the TAPAS Configuration Service, and discusses
some implementation issues. Finally, Section 4 concludes this Report.

2 JBoss Clustering Service

A JBoss cluster (or partition) is defined as a set of nodes. A node, in JBoss, is a JBoss
application server instance. There can be different partitions on the same network;
each partition is identified by an individual name. A node may belong to one or more
partitions (i.e., partitions may overlap); moreover, partitions may be further divided
into sub-partitions. Partitions are generally used for scopes of load distribution
purposes, whereas sub-partitions may be used for fault-tolerance purposes (it is worth
mentioning that, to the best of our knowledge, there are no implementations of the
sub-partition abstraction, as of today).

A JBoss cluster can be used for either homogeneous or heterogeneous application
deployment. Homogeneous deployment entails that each node in the cluster runs
identical services, and Enterprise Java Beans (EJBs); in contrast, heterogeneous
deployment entails that each node in the cluster may run a different set of services and
EJBs. It is worth observing that, in practice, this latter form of clustering is not
recommended [2]; hence, for purposes of our current discussion, in the following we
shall assume homogeneous deployment, only.

The JBoss Clustering service [3] is based on the framework depicted in Figure 1
below. This framework consists of a number of hierarchically structured services, and
incorporates a reliable group communication mechanism, at its lowest level. The
current implementation of this mechanism uses JGroups [4], a toolkit for reliable
multicast communications. This toolkit consists of a flexible protocol stack that can
be adapted to meet specific application requirements. The reliability properties of the
JGroups protocols include lossless message transmission, message ordering, and
atomicity.

Specifically, JGroups provides its users with reliable unicast and multicast
communication protocols, and allows them to integrate additional protocols (or to
modify already available protocols) in order to tune the communication performance
and reliability to their application requirements. JGroups guarantees both message
ordering (e.g., FIFO, causal, total ordering), and lossless message transmission;
moreover, a message transmitted in a cluster is either delivered to each and every
node in that cluster, or none of those nodes receives that message (i.e., it supports
atomic message delivery). In addition, JGroups enables the management of the cluster
membership, as it allows one to detect the starting up, leaving and crashing of
clustered nodes. Finally, as state transfer among nodes is required when nodes are
started up in a cluster, this state transfer is carried out maintaining the cluster-wide
message ordering.

The HighAvailable Partition (HAPartition) service is implemented on top of the
JGroups reliable communications; this service provides one with access to basic
communication primitives which enable unicast and multicast communications with

4

the clustered services. In addition, the HAPartition service provides access to such
data as the cluster name, the node name, and information about the cluster
membership, in general. Two categories of primitives can be executed within a
HAPartition, namely state transfer primitives, and RPCs.

The HAPartition service supports the Distributed Replicant Manager (DRM), and
the Distributed State (DS) services. The DRM service is responsible for managing
data which may differ within a cluster. Examples of this data include the list of stubs
for a given RMI server. Each node has a stub to share with other nodes. The DRM
enables the sharing of these stubs in the cluster, and allows one to know which node
each stub belongs to.

The DS service, instead, manages data, such as the replicated state of a Stateful
Session Bean, which is uniform across the cluster, and supports the sharing of a set of
dictionaries in the cluster. For example, it can be used to store information (e.g.,
settings and parameters) useful to all containers in the cluster.

The highest JBoss Clustering Framework level incorporates the HA-JNDI, HA-
RMI, and HA-EJB services. The HA-JNDI service is a global, shared, cluster-wide
JNDI Context used by clients for object look up and binding. It provides clients with a
fully replicated naming service, and local name resolution. When a client executes an
object lookup by means of the HA-JNDI service, this service firstly looks for the
object reference in the global context it implements; if the reference is not found, it
requires the local JNDI to return that object reference. The HA-RMI service is
responsible for the implementation of the smart proxies of the JBoss clustering (see
next Section).

Fig. 1: JBoss Clustering Framework

JGroups

HAPartition

HA
JNDI

HA
RMI

HA
EJB

Distributed
State

Distributed
Replicant
Manager

5

Finally, the HA-EJB service provides mechanisms for clustering different types
of EJBs; namely, the Stateless Session Beans, the Stateful Session Beans, and the
Entity Beans (no clustered implementation of the Message Driven Beans is currently
available in JBoss 3.x). The cluster version of the Stateless Session Beans appear to
be easy to manage, as no state is associated to those beans; the state management of
the Stateful Session Beans is implemented. In contrast, the state management of the
Entity Beans in a cluster is a rather complex issue which is currently addressed at the
level of the database the Entity Beans interface, only (see Section 3).

2.1 Load Balancing and Failover in JBoss
The JBoss Clustering service implements load balancing of RMIs, and failover of
crashed nodes (i.e., when a clustered JBoss node crashes, all the affected client calls
are automatically redirected to another node in the cluster).

The implementation of the load balancing and the failover mechanisms in the
JBoss Clustering Service can be based on one of the following three alternative
models [6], depicted in Figure 2 below, and summarized in the following.
1. Server Based: the load balancing and the failover mechanisms are implemented on

each clustered JBoss node;
2. Intermediary Server: these mechanisms are implemented by a proxy server;
3. Client based: these mechanisms are incorporated in the client application itself (in

the RMI stub).

Client
Application

Client
Application

Client
Application

Server 1 Server 2 Server 1 Server 1Server 2 Server 2

 1) 2) 3)

Server Based Intermediary
Server

Client Based

JBoss adopts the above model 3), which includes the load balancing and failover
mechanisms inside the client stub. Specifically, a client gets references to a remote
EJB component using the RMI mechanism; consequently, a stub to that component is
downloaded to the client. The clustering logic, including the load balancing and
failover mechanisms, is contained in that stub. In particular, the stub embodies both

Fig. 2: Clustering Implementation Models

6

the list of target nodes that the client can access, and the load balancing policy it can
use.

Moreover, if the cluster topology changes, the next time the client invokes a
remote component, the JBoss server hosting that component piggybacks a new list of
target nodes as part of the reply to that invocation. The list of target nodes is
maintained by the JBoss Server automatically, using JGroups. Thus, in general,
following a client RMI, the client stub receives a reply from the invoked server,
unpacks the list of target nodes from that reply, updates the current list of target nodes
with the received one, and terminates the client RMI.

This approach has the advantage of being completely transparent to the client.
The client just invokes a method on a remote EJB component, and the stub
implements all the above mechanisms. From outside, the stub looks like the remote
object itself; it implements the same interface (i.e., business interface), and forwards
the invocations it receives to its server-side counterpart. When the stub’s interface is
invoked, the invocation is translated from a typed call to a de-typed call.

For instance, if the client calls the following method on a remote object:

myRemoteComponent.businessMethod(params);

this code will be transformed into the following system-level invocation:

proxyClientContainer.invoke(invocation);

where invocation is an instance of the Invocation class which contains
(i) the arguments passed to the method, (ii) the method being called, and (iii) arbitrary
payloads that can be added to the invocation [6]. The de-typed invocation is passed
through a set of client-side interceptors, as depicted in Figure 3. The load balancing
and failover mechanisms are located in the last interceptor of the chain (i.e.,
interceptor C in Figure 3 below).

Fig. 3: Client-side interceptors

Client

Client JVM

Invokers to target
nodes

Run time generated
interfaces

Invocation
Handler

INTERCEPTORS

A B C

7

This interceptor uses the load balancing policy selected at deployment time in
order to elect a target node where to forward the invocation.

Currently, JBoss 3.2 implements the following four load balancing policies,
which can be specified into the EJB deployment descriptors:

Random Robin: each call is dispatched to a randomly selected node.
Round Robin: each call is dispatched to a new node. The first target node is

randomly selected from the target node list;
First Available: each stub elects one of the available target nodes is as its own

target node for every call (this node is chosen randomly). When the list of the target
nodes changes, a new target node is elected only if the earlier elected one is no longer
available.

First Available Identical All Proxies: this policy is the same as the First
Available policy above. However, the elected target node is shared by a proxy family;
i.e., a set of stubs that direct invocations to the same target node.

3 TAPAS Configuration Service
The TAPAS Configuration Service is responsible for setting up the platform required
for hosting a distributed application (e.g., an electronic auction application); this
platform is to be set up so as to meet effectively the QoS requirements of that
application. Those requirements are specified in a Service Level Agreement (SLA),
agreed upon by the application owner and the ASP; hence, the Configuration Service
receives in input an SLA in order to start-up its platform configuration activity.

At start-up time, the Configuration Service interrogates a set of sensors, located
in each resource of the clustered machines, in order to discover the availability of
those resources. Its principal responsibility is to configure the application within the
hosting environment running in those machines, at application deployment time, and
to reconfigure the application at run time, if necessary. Specifically, at deployment
time, the Configuration Service selects the most suitable cluster configuration that can
meet the input SLA. At run-time, instead, it may have to reconfigure the cluster as a
response to a reconfiguration request from the Controller Service [1] (e.g., in case this
latter Service has detected variations in the hosting environment, which may lead to
violations of the input SLA). This reconfiguration may either entail distributing the
computational load across the clustered resources, dynamically, or extending the
cluster with additional resources, if available (or both).

It is worth observing that a variety of independent applications may be hosted
concurrently within the same physical cluster of resources, at least in principle. Each
of these applications may have a different SLA with its hosting environment. In this
context, a cluster-wide load balancing policy may well trade possible economic
penalties, which may be caused by the violation of a specific application SLA, for
resources required by another application (e.g., as the penalties incurred in violating
the SLA of the former application are less dramatic than those which would be
incurred in by violating the SLA of the latter application; as the revenues from the
latter application are far superior than the former application penalties). Hence, the

8

operation of the above mentioned load balancing policy is to be based on a cluster-
wide view of the state of the clustered resources.

The load balancing policies currently included in the JBoss clustering service are
defined at deployment time, inside the EJB deployment descriptors. In particular, a
load balancing policy can be specified for each bean, for the home and remote
proxies, as shown in Figure 4, below.

<jboss>
<enterprise-beans>
 <session>

<ejb-name>MySessionBean</ejb-name>
<clustered>True</clustered>
<cluster-config>
 <partition-name>DefaultPartition</partition-name>

<home-load-balance-policy>
 org.jboss.ha.framework.interface.RoundRobin
 </home-load-balance-policy>

<bean-load-balance-policy>
org.jboss.ha.framework.interface.FirstAvailable
</bean-load-balance-policy>

</cluster-config>
 </session>
</enterprise-beans>
</jboss>

Note that load balancing policies currently available in JBoss implement non-adaptive
load balancing within the cluster; hence, at run time, they may select a target node in
the cluster which may well be overloaded or close to being overloaded. This
limitation cannot be overcome by those policies as they operate with no knowledge of
the effective load of the clustered machines, at run time.

However, additional load balancing policies can be incorporated in a JBoss
application server by plugging them into the last interceptor of the chain, as illustrated
in Figure 3. In particular, the load balancing in JBoss can be augmented with
adaptive strategies that select the target machines at run time, based on the actual
computational load of those machines.

3.1 Implementation Issues

The Configuration Service can be implemented as an Mbean, and integrated into
the JBoss application server through the JMX software bus. It will be a pure server-
side component; its implementation model is as depicted in the earlier Figure 2.1). We
believe that this solution can be as transparent to the client code as that currently
provided by the JBoss application server (depicted in Figure 2.3), and described
earlier).

Figure 4: Deploying load balancing policies in JBoss

9

The operational principles of the Configuration Service we are implementing can
be summarized as follows. Assume that a JBoss cluster be set up, and that
homogeneous application deployment is to be carried out in order to meet the high
availability requirements of an application to be run in that cluster.

Each JBoss node in the cluster incorporates a Configuration Server (CS) (i.e. an
implementation of our Configuration Service), identified by a cluster-wide unique
identifier (ID). Note that the management of the unique server ID’s can be easily
implemented using the JGroups view management protocol; we are not going to
discuss this issue further in this Report.

At application deployment time, the CS with the lowest ID becomes the
Configuration Leader. This Leader examines the application SLA, and contacts its
peer CSs in the cluster in order to construct a suitable partition of nodes that can host
the application.

Note that the nodes in that partition will host identical instances of the
application, as homogeneous deployment is being carried out. Owing to the same
motivation, with the current JBoss implementation of the clustering service, each
node in that partition should be capable of honouring the application SLA.

As the partition is started up, the application can be deployed and run. Clients can
issue RMIs to any node in the partition, transparently.

If a failure occurs, (e.g., the crash of a JBoss node in the partition), the standard
failover mechanism in JBoss redirects the client RMIs, addressed to the crashed node,
to another active node in the partition. This node will be selected according to one of
the four load balancing policies introduced earlier, and specified at deployment time.
As these policies select a target node with no knowledge of the run time
computational load of that node, it is possible that the RMI redirection following a
node failure in a partition lead to overloading another node in that partition. Note that,
in principle, this process may continue until all nodes in that partition are brought to
an overloaded state, as a sort of domino effect.

In order to overcome this problem, in our implementation the Configuration
Service aims to maintaining a fair distribution of the computational load among the
nodes belonging to the same partition. To this end, in case a node failure occur within
a partition, our Configuration Service firstly attempts to reconfigure that partition by
integrating in it a spare node that replace the faulty one; that spare node can be
obtained possibly from another partition (or from a pool of resources reserved for this
purpose, for example). Secondly, if no spare node is available, and the above
reconfiguration cannot be carried out, the Configuration Service redistributes the
RMIs addressed to the faulty node among the remaining nodes in the partition (this
load distribution can be carried out using an adaptive load balancing policy that takes
its decisions based on the current computational load of those nodes).

State consistency among the nodes belonging to the same partition can be
maintained using the JGroup reliable communication framework, as JBoss currently
does.

To conclude this session, we wish to point out that the Configuration Service
introduced above is transparent to both the application client code, and the client
stubs. In addition, it offers a higher degree of fairness, among the nodes belonging to
the same partition, than the current JBoss failover mechanism.

10

3.2 Open Issues
Issues of heterogeneous application deployment, and application component
replication can play an important role in the implementation of our Configuration
Service. In this Subsection, we introduce these two issues, and examine three
alternative implementations of our Service.

Heterogeneous deployment of application components consists of the ability of
distributing the components of an application across a cluster of machines, in a
controlled manner.

As already mentioned, the JBoss documentation available to us does not
recommend the use of this form of application deployment, as there are a number of
as yet unsolved problems related to it, including lack of i) distributed locking
mechanisms for use from entity beans, and ii) cluster-wide configuration
management.

However, we believe that heterogeneous deployment, in contrast with the
homogeneous one discussed earlier, can be particularly attractive when applied to
component-based technologies. Typically, these technologies adopt a distributed
multi-tier paradigm, in which the application consists of separate components;
namely, web components, and EJB components. In general, the Web components of
an application are directly exposed to the clients, so as to mask the business tier in
which the EJB components are located.

As we are considering a scenario in which client-server communications are
enabled via wide area networks, as clients can be located geographically far away
from the servers, it may well be convenient to distribute the application so that its
Web components are as close as possible to the clients. Moreover, in order to reduce
the application response times, it can be desirable to distribute the application EJB
components so that those directly connected to the database (e.g. the entity beans) are
located as close possible to the clustered database servers. This can be done both at
deployment time, when the Configuration service acquires the application QoS
requirements (i.e. the SLA), and at run time, when the application SLA is close to
being violated (as reported by the Controller Service [1]).

Component replication is a further issue that deserves attention. It is worth
distinguishing between replicating application components (i.e., EJB classes, Web
component classes, and so on), and replicating instances (i.e., run-time data) of those
components [7]. As to the first form of replication, JBoss provides a mechanism that
automatically replicates components classes deployed on one node to the other nodes
in the cluster. This mechanism is termed Farming. Instead, in order to support the
latter form of replication, the JBoss clustering service provides [8]:

• Replicated state for Stateful Session Beans
• Replicated HTTP Sessions
• Replicated Entity Beans
• Global cluster-wide, replicated JNDI tree (HA-JNDI)

The Stateless Session Beans do not need to be replicated as no state is associated
to them; they only need to be deployed within the cluster.

11

Owing to the above observations, three different implementation approaches of
the Configuration Service suggest themselves; namely, a first approach implementing
HEterogeneous Application Deployment (HEAD), a second one implementing a
HOmogeneous Application Deployment (HOAD), and finally a third one
implementing both forms of Deployment (HHAD). These three approaches are
introduced below in isolation.

HEAD – In order to implement heterogeneous deployment, the Configuration Service
has to know in detail the Deployment Descriptors (DDs) of all the application
components, at deployment time, so as to optimize the physical distribution of those
components (i.e., if components communicate by means of local interfaces, they must
be located in the same JVM, and are to be deployed so as to ensure that the SLA is
met). At run time, it can be possible to migrate components from overloaded
machines to other, more lightly loaded, machines.

The principal advantage of this approach is that the heterogeneous deployment
allows the Configuration Service to distribute the computational load so as to
optimise the use of the available resources in the cluster. However, this approach
requires that the Configuration Service know all the application component DDs , in
order to distribute those components. Moreover, migration of components from one
machine to another is a complex task that requires that issues of state propagation,
distributed locking, and management of a cluster-global JNDI tree be carefully dealt
with (the latter issue is addressed by the latest JBoss release).

Finally, we have already pointed out that, currently, JBoss implements non-
adaptive load balancing policies. In contrast, we require the use of adaptive load
balancing. Thus, we can either (i) integrate a new and adaptive load balancing policy
into the JBoss clustering, or (ii) require that the Configuration Service implement its
own adaptive load balancing. In the either cases, the load balancing policy distributes
the computational load among the clustered machines, based on the actual load of
those machines. However, the former implementation requires that the load balancing
policy be specified in the EJB DDs, in order to be applied. In contrast, the latter
implementation removes this requirement; however, it requires that new invokers be
implemented on both the client and server sides.

HOAD – If support for homogeneous deployment is required (i.e. copies of the entire
application are located in every machine, or in a sub-set of machines, in the cluster),
the Configuration Service has to establish at deployment time the most suitable
partition in which the application can be run. In this case, the entire application can be
deployed in only one node of the cluster. Then, the JBoss Farming service provides its
distributed deployment. At run time, if the hosting environment conditions change
and the SLA is about to being violated, the Configuration Service has to either choose
a different partition, or create a new one, and reconfigure appropriately the
application..

This solution seems to be simpler than the first one: we just have to use the JBoss
clustering framework, which provides us with the features we need, in this case.
However, the problem related to the non adaptivity of the load balancing policies
currently made available by JBoss still remains unsolved.

12

H H A D – Finally, the two approaches above can be combined as follows. At
deployment time, the Configuration service can execute homogeneous deployment by
replicating component classes using the JBoss Farming service; thus, it will create a
partition in which the application can be run, and load balancing applied. At run time,
if the SLA is close to being violated, the re-configuration activity of the Configuration
Service can decide whether to (i) add more replicas of the entire application, (ii) add a
certain number of machines to the initial cluster partition, i.e. to augment the number
of available resources, (iii) migrate application components from overloaded
machines either to other ones in the current partition, or different machines that do not
belong to this partition.

The third option may lead to having different beans of the same application
deployed and running onto different machines (i.e., it may lead to heterogeneous
application deployment). However, implementing this option may have a notable
impact on the overall performance of the clustered application server, as migrating
application components within the cluster can be very costly. Hence, this option can
be used only when some particular hosting conditions occur (e.g. critical thresholds
are reached within the hosting environment, and detected during the SLA monitoring
phase).

Finally, even in this third option, we can use the JBoss clustering features;
however, some changes to the current JBoss implementation are required in order (i)
to apply an adaptive load balancing policy, (ii) to provide a distributed transactional
manager, and (iii) to both manage migration operations, and improve the performance
of those operations.

A summary of this discussion is contained in table 1, below.

4 Concluding Remarks
In this Report we have examined the JBoss clustering features, in the view of their use
in the implementation of the TAPAS platform Configuration Service. Specifically,
we have examined the current implementation of the JBoss clustering service, and
suggested three different approaches to the implementation of our Configuration
Service.

Our discussion of the JBoss clustering service has shown that the principal
shortcoming of this service is that it does not provide its users with an adaptive load
balancing policy (although it does not prevent those users from implementing their
own policies).

As we believe that this form of load balancing is required within the TAPAS
platform, we have proposed the integration of one such policy in the application
server; in particular, in this Report we have proposed to impelment an adaptive load
balancing strategy at the server level (rather than at the client level, as in the current
JBoss implementation).

In addition, in this Report we have pointed out the following limitations we have
found in the current JBoss clustering implementation:
• A cluster (i.e., all its nodes) is (are) used completely when a clustered application

is homogeneously deployed; i.e., there is no a dynamic Farming Service. For
instance, if the cluster is composed by five nodes (i.e. five JBoss server instances),
the application components cannot be deployed in a sub-set of machines of the

13

initial cluster (i.e. there is no implementation of the sub-partition concept in
current stable JBoss releases). The load balancing policies are (i) defined at
deployment time, inside EJB deployment descriptors, (ii) integrated into client-
side proxy code, and (iii) are non-adaptive (i.e. none of them considers the
dynamic nature of the computational load of the clustered machines).

• As to the replication of EJB components (HA-EJB), there is (i) no replicated
version of Message Driven Beans in stable JBoss releases, and (ii) no distributed
locking mechanisms or distributed cache for the synchronization of Entity Beans.
These beans can only be synchronized by using a row-level locking in the
database. Thus, if an entity bean locks a database and fails, there is to be a
mechanism, at the database level, responsible for unlocking the resources used by
that bean.

• There is no unified management of the cluster (i.e. it is missing a cluster-wide
configuration management, and it is only possible to connect directly to the JMX
console of each node).

To conclude this Report we wish to summarize the current status of our work.
• The Interpreter Service, which parses an SLA in order to transform it into a Java

object, has been currently implemented and integrated into the JBoss application
server as an MBean.

• For the purposes of our discussion, we have assumed that the JBoss cluster of
machines is based on a Local Area Network (LAN); however, in principle, this
cluster can be geographically distributed across the Internet using, for example,
VPN technology that abstracts out possible networking heterogeneities. Owing to
this observation, we are currently exploring the possibility of constructing a VPN
based network infrastructure that will allow us to distribute a JBoss cluster across
at least five sites in Europe (namely, the sites of the TAPAS project partners) as if
it was distributed on a local area network. One of the principal scopes of this
exercise is to experiment the heterogeneous deployment discussed in the previous
Subsection 3.2.

• In addition, in order to evaluate the feasibility of implementing our Configuration
Service, we are assessing to what extent the JBoss application server can be
programmed, so as to distribute the computational load dynamically, at run time.
The testbed for this experiment will consist of a cluster of machines, running
JBoss, which will be subjected to variable load conditions. Our plan is that this
cluster of machines, initially based on the local area network in our Laboratory,
will then be based on the VPN mentioned above.

• Finally, we wish to report that an initial implementation of the Configuration
Service is running in our laboratory. Currently, this Service can automatically start
up a JBoss node, and transfer nodes among partitions. This service runs as an
Mbean, and is integrated in JBoss via JMX.

14

Configuration
Implementations

Description Advantages Disadvantages

Heterogeneous
Deployment

Different beans of
the same
application
deployed in the
machines of the
cluster, both at
deployment time
and at run time.

Better utilization
of resource
availability (e.g.
web components
close to clients,
EJB components
related to
database close to
database servers)

Need to know all
application
component DDs.
Distributed
transactional manager
and mechanisms to
improve
performances
necessary for
components
migration. Adaptive
load balancing policy
missing: to be
included

Homogeneous
Deployment

Copies of the
entire application
deployed in the
cluster (i.e. every
machine with the
same beans at
deployment and at
run-time)

Simpler solution
than the previous.
JBoss clustering
used with all its
features

Adaptive load
balancing policy
missing: to be
included .

Homogeneous and
Heterogeneous
Deployment together

Copies of the
entire application
deployed in the
cluster at
deployment time.
At run time some
machines can
have different set
of beans of the
same application

Simpler solution
than the first one.
Possibility to
exploit the
available
resources at run-
time. JBoss
clustering used
with all its basic
features.

Distributed
transactional manager
to provide as well as
mechanisms to
manage migration
activities. Adaptive
load balancing policy
missing: to be
included

Table 1: Application deployment alternatives

15

5 References
[1] G.Ferrari, G.Lodi, F.Panzieri and S.K.Shrivastava “The TAPAS Architecture:

QoS Enabled Application Servers”, TAPAS deliverable D7, April 2003, Brussels.

[2] JBoss group “Feature Matrix: JBossClustering (Rabbit Hole)”, 19th of March
2002.

[3] S.Labourey and B.Burke “ JBoss Clustering 2nd Edition”, 2002.

[4] http://www.javagroups.com/

[5] G.Ferrari and G.Lodi “Implementing the TAPAS Architecture”, TAPAS Internal
Draft, December 2003.

[6] S. Labourey “Load Balancing and Failover in the JBoss Application Server”,
2001-2004 IEEE Task Force on Clus te r Comput ing ,
http://www.clustercomputing.org

 [7] J.Vuckovic et al. “JBoss Clustering Analysis”, Bologna, February 2003.

[8] B.Burke and S.Lauborey “Clustering with JBoss 3.0”, ONJava.com, October
2002.

