
Implementing the Monitoring of Service Level Agreements

Graham Morgan1, Simon Parkin1, Carlos Molina-Jimenez1, and James Skene2

(1)School of Computing Science, University of Newcastle, UK
(2)Department of Computer Science, University College London, UK

{Graham.Morgan, S.E.Parkin, Carlos.Molina }@newcastle.ac.uk, J.Skene@cs.ucl.ac.uk

Abstract
Monitoring of Service Level Agreements (SLAs) is
required to determine if the Quality of Service (QoS)
provided by a service provider satisfies the expectations
of a service consumer. In this paper we describe an
implementation that has the aim of providing SLA
monitoring services to SLA participants that interact
across the Internet. We assume SLA participants may
deploy their services using a number of different
middleware platforms and may define their SLAs in a
number of different ways. Furthermore, as the number of
SLAs and associated participants may be large in
number, a scalable solution to SLA monitoring is
desirable. To avoid the time consuming task of hand
coding monitoring software for gathering metric data on
a per SLA basis, we automatically generate such software
from computer readable SLA specifications.

1. Introduction

Service Level Agreements (SLAs) specify the Quality
of Service associated with the interaction between the
provider of a service and a service consumer. SLAs are
gaining in importance as increasing numbers of
companies conduct business over the Internet (e.g.,
banking, auctions), requiring the positioning of SLAs at
organisational boundaries to provide a basis on which to
emulate the electronic equivalents of contract based
business management practices.

Monitoring is required to gain statistical metrics about
the performance of a service to determine if the level of
Quality of Service (QoS) agreed upon between provider
and consumer is realised. Third parties may assume
responsibility for monitoring SLAs to ensure the results of
the evaluation process are trusted by both the provider and
consumer [2].

Existing approaches to the monitoring of SLAs by
third parties is not well advanced:

• Ambiguity – SLAs may appear ambiguous
(leading to multiple interpretations) with no
indication of how QoS attributes are to be
monitored.

• Lack of generality – monitoring tends to be
platform (middleware) specific and tightly
coupled to an SLA language.

• Poor scalability – the scalability required to
monitor many large numbers of SLAs
involving many participants is not properly
addressed for many application types (e.g., e-
commerce).

Our previous work on the monitoring of SLAs [13]
has identified, isolated and reasoned about the basic
design issues of monitoring. We presented an architecture
that covers the fundamental issues of SLA monitoring:
SLA specification, separation of the computation and
communication infrastructure of the provider, service
points of presence, metric collection approaches,
measurement service and evaluation & detection service.
As a next step, we now turn our attention to the
implementation of our architecture. As in our previous
work on design, we assume the viewpoint of an
organisation that is concerned with the provisioning of
third party monitoring for participants of SLAs. If such an
organisation is to support SLA monitoring for many
different types of clients then an assumption that only a
single SLA language will suffice and all technologies are
enabled via a single middleware standard may not be
realistic.

Different contractual requirements between SLA
participants have resulted in a number of SLA languages
and many applications that require monitoring are
deployed using different types of middleware (e.g.,
Common Object Request Broker Architecture (CORBA),
Java 2 Enterprise Edition (J2EE), Web Services). Existing
monitoring services are SLA language dependent and
middleware dependent, making them unsuitable for
deployment over a variety of platforms using a variety of
SLA languages. Furthermore, an organisation providing
SLA monitoring may be concerned with many hundreds,
possibly thousands, of SLAs to ensure a viable business
model. This engineering problem of scalability has only
been addressed in the context of Internet traffic
engineering, and not in the more general case of SLA
monitoring associated with inter-organisational issues.

 1

To facilitate the process of SLA evaluation, metric
data must be gathered by software components, possibly
within the service provider domain, as specified by an
SLA. Hand coding such software on a per SLA basis is a
time consuming task, especially if an organisation
specialising in SLA monitoring must deal with many
thousands of SLAs. The automated parsing of machine
readable SLAs by an SLA violation and detection tool-kit
can derive the software components required for SLA
violation detection [14]. However, deriving the software
components required for the monitoring of metric data in
a similar manner has not yet been addressed.

Building on our previous work on the design of an
SLA monitoring architecture, this paper presents an
approach to SLA monitoring that is both modular
(requires minor tailoring to work with different SLA
languages and middleware platforms) and scalable (may
scale to satisfy the SLA monitoring requirements of many
SLAs and their participants). Our system is capable of
deriving the appropriate metric gathering software
directly from machine readable SLAs. We demonstrate
the suitability of our approach by tailoring our system to
work with an application providing service provision
across the Internet, governed by SLAs described using an
existing SLA language, deployed over J2EE and Web
Service middleware.

This paper is organized as follows. Section 2 describes
background and related work and identifies a number of
implementation challenges that, we believe, an SLA
monitoring implementation should meet. Section 3
describes our implementation and section 4 provides
conclusions and future work.

2. Background & Related Work

This section highlights a number of implementation
challenges an organisation will face when delivering SLA
monitoring services to clients (providers and consumers).
We use a description of our SLA architecture to aid in
identifying such challenges and assess how existing
implementations are addressing such challenges.

2.1 SLA Monitoring Architecture

The architecture we proposed [13] for monitoring
SLAs is shown in Figure 1. For sake of simplicity, we
assume that the provision of the service is unilateral, that
is, the service flows only from the provider to the service
consumer, as opposed to bilateral provisioning where the
two interacting parties provide services to each other;
bilateral provisioning is a more general scenario and may
be represented by two complimentary unilateral
deployments. With unilateral service provisioning we
need to monitor the observance of only two contractual
obligations: (i) the provider’s obligations, dictating that
the service must satisfy certain QoS requirements; and (ii)

the service consumer’s obligations, which dictate how the
service consumer is expected to use the service.

We assume that calculations relating to QoS are
specified explicitly (e.g., maximum latency) in a
computer readable format, allowing automated SLA
evaluation and violation detection.

Provider Consumer

Measurement Service
MeCo

ISP

probe calls
metric data

Violation
notification

Subscription
to SLA

violation
events

Evaluation and
detection service

MeCo

Figure 1 – Architecture for unilateral monitoring of QoS.

The components shown in the diagram that assume
responsibility for SLA monitoring are:

• Metric collector (MeCo) – Gathers metric
data associated with the performance and usage
of the observed system.

• Measurement service – Measures a given list
of metrics at specified intervals.

• Evaluation and violation detection service –
Determines if SLA violation has occurred via
metric data gathered and informs
provider/consumer of such violations.

 The two MeCos shown in the diagram gather metric
data relating to the provider’s obligations (MeCo in
measurement service) and the consumer’s obligations
(MeCo in service provider). This scenario assumes a
probing style approach to service monitoring. That is,
synthetic load is generated by a simulated client (provided
by measurement service) to determine if the provider is
satisfying SLAs [3] [9]. An alternative to probing would
be to have a MeCo co-located with the consumer and
gather metric data associated with actual client calls. We
consider only the probing approach in this paper as it may
not be possible to deploy monitoring at the consumer side
(as consumers may not always agree to be disturbed
unduly with metric collection responsibilities).

As MeCos directly interact with the observed system
they must accommodate whatever middleware platform a
provider and consumer are using. Furthermore, MeCos
must realise what data to gather. This information is most
appropriately drawn from an SLA as it is the SLA that
includes all the required information for determining how
QoS is related to gathered metric data. This provides our
first implementation challenge:

1. Allow SLA monitoring to occur over a variety
of middleware platforms.

From the viewpoint of an organisation specialising in
the provision of SLA monitoring the automated

 2

production of MeCos from SLAs for a variety of
middleware platforms would be welcome. This is
analogous to the production of client/server stubs for
easing the implementation of remote procedure call
(RPC) code: an interface specification is parsed to
produce the required code to enact communications across
process space (possibly between nodes on a network).
This provides our second implementation challenge:

2. Ease the development of a MeCo via
automating as much code generation as
possible using SLAs as a basis on which such
code may be derived.

MeCos must have a method of communicating the
metric data they have gathered to the measurement
service. This requires the measurement service to
communicate with MeCos that may be geographically
distributed across the Internet (e.g., within providers’
domain). Assuming monitoring is provided to a number of
client organisations, there is a need to utilise an
appropriate communication mechanism that is scalable to
ensure metric data may be sent to the measurement
service in a timely manner and violations may be sent to
the appropriate SLA participants. This provides our third
implementation challenge:

3. Ensure metric data and SLA violation
notifications may be distributed around the
system in a manner that is scalable.

Once the metric data has been received by the
measurement service, the data must be prepared in a
suitable format for handling by the evaluation and
detection service. This should be straightforward as the
SLA specifies exactly what data is required and in what
form. However, an organisation specialising in SLA
monitoring may utilise a number of SLA languages for
satisfying the different requirements found in a variety of
application domains. If this is the case then the
measurement service must be capable of interfacing with
the evaluation and detection service via a number of
different SLA language standards, even though the
measurement service’s basic functionality remains
unaltered. Therefore, an appropriate approach to
implementation would be to allow the measurement
service to work with arbitrary SLA languages with only
the minimum of tailoring. This provides our fourth
implementation challenge:

4. Allow multiple SLA languages (and associated
evaluation and detection service) to be
incorporated into a single monitoring
implementation.

We do not state that the four challenges we have
identified are the only implementation challenges, but

they provide the basis for forming the requirements which
we wanted to satisfy in our SLA monitoring
implementation (taking the viewpoint of an organisation
that delivers SLA monitoring solutions to clients). We
continue this section with a discussion of related work and
how such work relates to our four implementation
challenges.

2.2 Existing Approaches to Implementation

An approach to MeCo deployment is via the use of
middleware interceptors (e.g., [8]). Interceptors are
middleware components that can be placed between
application components to provide additional
functionality (e.g., security, redirection). Interceptors
provide an opportunity to implement SLA monitoring
with the minimum of modification to an observed system.
Popular implementations of middleware standards (i.e.,
CORBA , J2EE, Web Services) provide interceptor type
mechanisms. Therefore, the use of interceptors is widely
advocated as the appropriate way of providing SLA
monitoring for distributed applications. However, existing
implementations of MeCo type interceptors are
middleware dependent (e.g., CORBA [5] [7], Web
Services [1] [4] [6]), making a single implementation
unfit for deployment over a number of middleware
platforms (our first implementation challenge).

The process of automated code generation from SLAs
for the purposes of SLA evaluation has been achieved
(e.g., [6] [11]). However, deriving code that will
implement a MeCo suitable for deployment on a specific
middleware platform is not yet fully realised. The related
work that comes closest to our second implementation
challenge is presented in [6] (automated SLA monitoring
for web services). Via the use of business management
platform (BMP) agents [6] concentrates on the automation
of SLA monitoring for Web Services. The distributed
nature of the approach described in [6] provides an
opportunity to manage metric data collection at observed
systems with the minimum of human involvement.
However, this peer-to-peer approach is not suitable for all
application types, and not suitable for an organisation
delivering SLA monitoring services using our
architecture.

As demonstrated by [7] (QoS monitoring associated
with network traffic engineering), scalability may be a
requirement for a practical deployment of SLA
monitoring. As our third implementation challenge
indicates, when delivering SLA monitoring services (even
in an e-commerce environment) scalability of message
dissemination is desirable. [7] highlights the usefulness of
message oriented middleware (MOM) as an appropriate
message dissemination medium for metric data. An
alternative to MOM would be to use a client/server
approach (e.g, RPC).

 3

The client/server model requires clients and servers to
record references to each other to enable the initiation of
bi-directional information flow. The scalability of such a
model is difficult to maintain when the number of
interconnected clients and servers may be appropriately
measured in hundreds or thousands. Furthermore, the
processing of messages must be handled as and when
messages are received by clients and servers. The MOM
model is considered suitable for large-scale data
dissemination as it tackles these two problems by
presenting a weakly coupled message passing
environment. In the MOM model information flow is not
based on the referencing of the sender and receiver, as in
client/server, instead information flow is based on the
properties of a message. Evidence provided by [7]
indicates that our third implementation challenge may be
best served via the use of MOM technologies.

 There are a number of SLA languages proposed by
the literature (e.g., Web Service Level Agreements
(WSLA) [4], Quality Description Languages (CDL) [5],
Service Level Agreement Language (SLAng) [11]).
Unfortunately, no existing implementation meets
implementation challenge 4 as all existing SLA
monitoring implementations are SLA language specific.

From our discussion of existing approaches to SLA
monitoring we may determine that there exists no single
implementation that meets our four implementation
challenges. However, attempts at automated SLA
monitoring [6] and scalable metric data dissemination [7]
do provide evidence that at least two of our challenges
may be satisfied by existing implementations (albeit
confined to specific application domains).

3. Implementation

As already mentioned in section 2, our approach to
SLA monitoring is based on our earlier work described in
[13], culminating in the architecture shown in figure 1.
For our SLA language we use SLAng [11]. SLAng
represents the product of work carried out at University
College London (UCL).

SLAng meets the needs of an SLA language to
support construction of distributed systems and
applications with reliable QoS characteristics. The
Unified Modelling Language (UML) is used to model the
language, producing an abstract syntax. This language
model is embedded with an object-oriented model of
services, service clients and their behaviour. Constraints
are defined formally using the Object Constraint
Language (OCL), providing the semantics. This approach
permits natural and economical modelling of design and
analysis domains and the relationships between them,
supporting both manual and automatic analysis.

The monitoring system we have constructed uses
metric collection as defined in SLAng and uses the
SLAng engine for automating SLA evaluation. From an

SLA defined using SLAng it is possible to automate the
production of the appropriate software components
needed for SLA evaluation (incorporated into SLAng
engine). It is worth noting that the SLAng engine only
checks a limited number of system performance metrics,
notably those related to request latency, service
availability and percentage of service usage (e.g., how
many requests clients are issuing over a period of time).
We have developed a way of describing conventional
contracts by means of Finite State Machines (FSMs) for
representing more application dependent QoS [17].
However, for brevity and to demonstrate our work we
only consider metrics as described using SLAng [11].

Service Provider Service Consumer

Measurement Service

MeCo

MeCo ISP

SLAng
Engine

SOAP

JMS

probe calls

metric data

SLA
violations SLA

violations
SLA event

subscriptions

SLA event
subscriptions

Figure 2 –SLAs monitoring architecture with message

oriented middleware.

We assume communications that are required to be
monitored are enacted over middleware technologies that
support message interception. This is a valid assumption
as all major middleware vendors provide a mechanism for
message interception in their technologies (e.g.,
interceptors in CORBA, handlers in SOAP, interceptors in
EJB containers).

The architecture shown in figure 2 alters the
architecture shown in figure 1 to accommodate our
approach to implementation. For completeness (some of
the descriptions deviate little to those presented in section
2) we provide descriptions of the components in our
implementation influenced diagram shown in figure 2:

• Service provider MeCo - This MeCo (metric
collector) intercepts service consumer requests
(and associated outgoing responses) and records
measurements based upon a service consumer’s
usage of the service provider’s platform. These
measurements aid in determining if a service
consumer is violating an SLA by using a service
inappropriately.

• Measurement service MeCo – This MeCo
observes the performance of service provider by
assuming the role of a service consumer.
Periodic probing of the service provider is
enacted by the measurement service MeCo to
gain measurements relating to the performance
of a service provider as viewed by a service
consumer. These measurements aid in
determining if a service provider is satisfying
service consumers as specified in an SLA.

 4

• Measurement service – Responsible for
collating the measurements gathered from
MeCos and informing SLA participants of SLA
violations.

• SLAng engine – A sub-system of the
measurement service that is responsible for
detecting SLA violations given metric data
supplied by the measurement service.

• Messaging service – Provides communication
platform across which metric data and SLA
violation notifications are propagated throughout
the system.

The measurement service may be within the domain of a
trusted third party, ensuring that service provider and
consumer may abide by the decisions on SLA violations
generated by the SLAng engine.

In the following sections we describe the
implementation of each component and how different
components collaborate to provide SLA monitoring and
SLA violation notification. When appropriate, we identify
how our implementation attempts to meet the
implementation challenges described in section 2.
Although our implementation is based on SLAng, J2EE
and Web Services, we state the type of tailoring that may
be required to enable other SLA languages, including
SLA engines, and middleware platforms to work with our
implementation. Our implementation is in Java.

3.1 Metric Collectors (MeCos)

MeCos are responsible for gathering metric data and
propagating such data to the measurement service for
evaluation. Service providers have a MeCo within their
organisational domain for monitoring service consumer
usage. MeCos are suitable for use with arbitrary
middleware platforms (and associated protocols).
Different middleware platforms may be supported with
the use of MeCo hooks. Only the code within the MeCo
hooks has to be tailored for specific middleware
platforms. MeCo hooks are middleware dependent and
are responsible for the interception of consumer
request/reply messages and passing such messages
through the MeCo. So far, we have demonstrated the use
of MeCo hooks for supporting Web Services using SOAP
and Enterprise Java Beans (EJBs) using Java Remote
Method Invocation (Java RMI). This combination was
chosen as these two approaches are combined in many
vendor middleware products that provide implementations
of J2EE, a well known architecture designed to ease the
development of enterprise computing solutions.

The specification of J2EE defines a platform for
developing Web-enabled applications using Java Server
Pages (JSPs), Servlets and Enterprise Java Beans (EJBs).
Application servers for Java components (also called
J2EE servers) are expected to provide a complete

implementation of J2EE. Web Services provide a
presentation of services for inter-organisational
communications with the back end application logic
implementing such services achieved using EJBs. We
used the JBOSS application server [10] to support EJBs.

Our SOAP MeCo hook implementation is based on
Apache eXtensible Interaction System (Axis) [15]. Axis
provides handlers (Axis Handlers) that may be chained
together to provide a mechanism for interception, and
possible alteration of a SOAP message (e.g., add/remove
headers, manipulate the body), at different points during
traversal of the protocol stack (i.e., before request is
processed by server side logic or before reply is received
by a client). Axis handlers provide an appropriate
opportunity to redirect SOAP messages to a MeCo (via
MeCo hooks) for metric gathering. The addition of Axis
handlers does not require alterations to the application
logic, therefore the introduction of monitoring at the
service provider may be achieved in a transparent manner.

We use JBoss interceptors [12] to implement MeCo
hooks suitable for interception of Java RMI invocations.
JBoss presents an implementation of the J2EE
architecture.

Axis Handler

JBOSS
Interceptor

MeCo Provider
Environment

soap

RMI

Server platform
EJB Container

SLAng
Manager

Metric
Notifier

Metric
Classloader

MeCo hooks Soap service

Figure 3 – Service Provider use of MeCos.

Figure 3 shows the architecture of MeCo deployment
in the service provider. The MeCo provider environment
contains a number of components that cumulatively
satisfy the metric collection and dissemination (back to
the measurement service) requirements of our monitoring
system (shown in figure 2):

• SLAng Manager – Examines an SLA contract
file (as used by SLAng engine) to determine the
metric data that the MeCo is to observe. The
product of parsing an SLA contract is a Java
class that may be used for gathering the
appropriate metric data. This Java class is stored
in a class repository for later use. As there may
be many SLAs that a MeCo is responsible for
monitoring at any one observed site, streamlining
of the monitoring may occur by avoiding
duplicate monitoring requests. For example, if
SLA1 and SLA2 describe the upper bound
latency for a client invocation C1, then the
message interception associated with C1 by a

 5

single MeCo hook may satisfy the monitoring
requirements of both SLA1 and SLA2.

• Metric Notifier – Based on the deduction of
what to monitor made by the SLAng manager,
the metric notifier assumes responsibility for
managing the appropriate message passing
between MeCo and measurement service. This
requires the creation of message channels over
which metric data will travel.

• Metric Classloader – Loads the appropriate
classes for implementing the monitoring of the
required data as specified by the SLAng
manager. Classes are loaded from the class
repository. Each class represents a metric type as
specified by the SLA language used by the
SLAng engine (e.g., response time).

The MeCo provider environment was developed in a
modular fashion so the minimum of tailoring was required
to make the MeCo work with different middleware
platforms, and different SLA languages. The MeCo
hooks, as already discussed, allow different protocols and
associated middleware platforms to be supported (only the
MeCo hooks require tailoring on a per-middleware basis).
For each SLA language a different SLAng manager and
class repository is required. This is because such a
language must be parsed (by the SLAng manager) and
appropriate mechanisms for metric data monitoring
realised (by class repository). This approach has the added
benefit of allowing our system to be extendable in that
any extensions that may be added to an SLA language
over time may be incorporated into the MeCo.

The MeCo in the measurement service differs from the
MeCo located in the service provider in that the
measurement service MeCo is employed to periodically
probe the service provider. Probing in this manner is
carried out to gain metric data relating to how service
providers appear to be performing as viewed by a service
consumer (e.g., response time of service provider). A tool
suitable for producing synthetic load may be used (e.g.,
JMeter [16]), to simulate the clients and implement the
desired probing strategy. Alternatively, a basic probing
strategy may be created and enacted automatically by the
MeCo by parsing the appropriate SLAs. The probing
strategy enacted by the MeCo is sufficient for determining
SLA violations. However, it is perceivable that an
organisation specialising in SLA monitoring may wish to
make use of complex probing strategies allowed by a tool
like JMeter (why we allow this choice of probing strategy
creation).

Once requests have been created and sent as part of a
probing strategy, they are intercepted by the measurement
service MeCo in the manner described previously (via
MeCo hooks etc.) with metric data passed from the MeCo
to the measurement service in the same manner as the

metric data generated at the service provider MeCo (via
messaging channels).

3.2 Messaging Service

The messaging service is responsible for passing
metric data from the service provider MeCo to the
measurement service and passing SLA violation detection
messages from the measurement service to interested
parties of an SLA. The Java Messaging Service (JMS)
was chosen as the message platform.

JMS provides an Application Programming Interface
(API) that allows Java developers to integrate MOM into
their applications. The JMS specification does not
indicate how the underlying system implementation is
achieved, resulting in a number of varying solutions
available from different vendors. A number of solutions
that attempt to provide scalability have been proposed
(e.g., [18]). As the JMS API is standard, we can use any
of these solutions. Therefore, our scalability concerns are
related to the way we use the standard JMS API (not the
underlying messaging implementation itself).

JMS supports point-to-point and publish/subscribe
models of interaction. Point-to-point is based on the
notion of queues, with a queue identified as an
asynchronous mechanism for passing messages from
suppliers to consumers. A client may get all its messages
delivered to a queue, allowing a queue to contain a variety
of different message types. Publish/subscribe is based on
topics, with clients publishing and subscribing to well
defined topics. The topic acts as a mechanism for
gathering and distributing related messages (as perceived
by an application) to clients and allows subscribers and
publishers to be unaware of each other’s existence.

The topic approach was chosen with the measurement
service creating a topic on a per operation basis (e.g., the
name of a method associated with an operation). We call
such topics metric topics. The measurement service
consumes messages as and when they are published on
the metric topics. This is a desirable scenario when we
consider a large scale deployment of our monitoring
architecture. Assuming we have multiple service
providers, there is no need for each service provider
MeCo to create a direct communication channel to the
messaging service. Requiring a messaging service to
manage communication links to hundreds or thousands of
service providers is not scalable. A MeCo disseminates
metric data by publishing such data on an appropriately
named metric topic. We found that this approach provided
an opportunity to allow multiple SLA engines (checkers)
to be employed. A problem with existing SLA engines
(checkers) is their lack of scalability when faced with
checking increasing numbers of SLAs [14]. Therefore, an
opportunity to employ additional engines (via additional
measurement services) and so improve scalability is
desirable in an SLA monitoring implementation. Via this

 6

method we also allow different SLA engines and
measurements services (possibly using different SLA
languages) to be used in our implementation, meeting one
of our implementation challenges.

Measurement
service (M1)

Measurement
service (M2)

T1 T2 T3

Service
Providers

JMS

Figure 4 – Message scenario using metric topics in JMS.

Figure 4 illustrates a scenario with multiple service

provider MeCos publishing metric data on metric topics
T1, T2 and T3. Measurement services M1 and M2 are
consuming metric data from these metric topics and are
responsible for identifying SLA violation. The set of
SLAs M1 is responsible for is different than the set of
SLAs M2 is responsible for, allowing M1 and M2 to share
the processing load associated with SLA violation for a
number of clients. The introduction of additional
measurement services in this manner is straightforward: a
measurement service registers as a consumer for the
metric data they are interested in (to enable SLA violation
detection). As the use of JMS provides loosely coupled
communications between MeCos and measurement
services, additional measurement services to be added
with minimum disruption to the overall function of the
system (via subscription to appropriate metric topics by
measurement services). This approach may support
multiple third party measurement services: a service
provider may provide services to multiple consumers,
with such consumers requiring different third parties to
govern their SLA violation detection mechanisms
(requiring different measurement services).

A metric topic message contains the metric ID (unique
identifier associated with a particular metric), values
monitored (metric data), client ID (unique identifier
associated with service consumer) and server ID (unique
identifier associated with service provider). The contents
of such a message is middleware/SLA language
dependent (but could easily be applied to other
middleware/SLA solutions).

Propagating an SLA violation to SLA participants is
achieved via a JMS topic (SLA topics). Such topics are
created on a per SLA basis, with organisations assuming
responsibility for registering as subscribers on the SLAs
they participate in. An SLA topic message consists of a
metric ID (associated with the metric that was violated)
and the value that caused such a violation.

3.3 Measurement Service

The measurement service evaluates metric messages
received from metric topics and notifies organisations, via
SLA topics, of SLA violations. The measurement service
contains a number of components (figure 5):

• SLAng Message Manager – Examines an SLA
and determines which metric and SLA topics are
required. Metric and SLA topics are created
when required by the SLAng message manager.
In addition, when an SLA is withdrawn from use
the SLAng message manager deletes the
appropriate SLA and metric topics (after
determining that the metric topics flagged for
deletion are no longer required by other, active,
SLAs).

• Metric Listener – Subscribes to the appropriate
metric topics as instructed by the SLAng
message manager and assumes responsibility for
consuming metric topic messages and translating
such messages to a format suitable for
acceptance by the SLAng engine.

• SLAng Engine – Receives messages from the
metric listener and issues SLA violation
notification messages.

• Violation Notifier – Subscribes to the
appropriate SLA topics as instructed by the
SLAng message manager and assumes
responsibility for translating violation
notification messages received from the SLAng
engine to JMS messages and issuing such
messages on SLA topics.

• Metric Manager – Generates appropriate Java
classes for implementing SLA language specific
functions (e.g., providing metric data in suitable
format for evaluation by SLAng engine).

Measurement Service

SLAng
Message
Manager

Metric
Listener

Violation
Notifier

JMS

MeCo

SLAng
Engine Metric manager

Figure 5 – Measurement service.

The metric listener must translate the metric data it
receives from metric topics into a suitable format for
submission to the SLAng engine. This requires a service
usage message to be created. A service usage message is a
description of how a service was used and relates to the
SLA clauses governing service/consumer interaction. The
SLAng engine examines service usage messages to
determine if SLA violation has occurred or if service

 7

usage has been enacted within acceptable bounds. The
violation notifier includes in the violation message details
relating to what caused the SLA violation in the message
issued to the appropriate SLA topic.

The service usage message is SLA language/engine
dependent. However, a class repository is used (in a
manner similar to how a MeCo realises what metric data
to gather), to maintain a collection of Java classes that
produce service usage messages as and when required.
Therefore, as the metric manager is responsible for
creating such Java classes, then a metric manager must be
developed on a per SLA-language basis. In addition to
creating service usage messages, the there exists classes in
the class repository that provide the appropriate interface
code required to communicate with an SLA engine.

4. Conclusion

We have described an implementation of SLA
monitoring that, with limited tailoring, provides an
opportunity to monitor service provision over a number of
different middleware platforms using different SLA
language specifications. The software components
required to gather metric data may be, partially,
automatically derived from SLAs, reducing the need to
hard code such components on a per-SLA basis. We have
demonstrated our implementation using a third party SLA
language and evaluation tool and gathered metric data
from EJB and Web Service components. MOM has been
used as a basis on which to create scalable SLA
monitoring implementations. The design of our system
provides an opportunity to utilise multiple SLA engines to
gain scalable processing resources suitable for evaluating
SLAs.

Our future work, in the short term, is concerned with
engineering tasks: extending our system to cover
additional middleware platforms (e.g., CORBA, .NET)
and the inclusion of a variety of SLA languages. In the
long term we are seeking to extend our scope of
applications to cover interactive media (e.g., games),
where peer-to-peer environments are predominant as
opposed to the client/server architectures that we have
considered so far.

5. References

[1] Markus Debusmann, Alexander Keller, “SLA-Driven
Management of Distributed Systems Using the Common
Information Model”, in Proceedings of the 8th IFIP/IEEE
IM, 2003

[2] Chris Overton, “On the Theory and Practice of Internet
SLAs”, Journal of Computer Resource Measurement
106, 32-45, Computer Measurement Group, 2002

[3] Ahsan Habib, Sonia Fahmy, Srivinas R. Avasarala,
Venkatesh Prabhakar, Bharat Bhargava, “On Detecting
Service Violations and Bandwidth Theft in QoS Network

Domains”, Computer Communications, Elsevier, Vol. 26
Issue 8, Pages 861-871, 2003

[4] Alexander Keller, Heiko Ludwig, “The WSLA
Framework: Specifying and Monitoring Service Level
Agreements for Web Services”, IBM Research Report,
2002

[5] Richard Schantz, John Zinky, David Karr, David Bakken,
James Megquier, Joseph Loyall, “An Object-Level
Gateway Supporting Integrated-Property Quality of
Service”, ISORC ’99, 1999

[6] Akhil Sahai, Vijay Machiraju, Mehmet Sayal, Li Jie Jin,
Fabio Casati, “Automated SLA Monitoring for Web
Services”, HP-Labs Report HPL-2002-191, 2002

[7] Abolghasem Asgari, Panos Trimintzios, Mark Irons,
Richard Egan, George Pavlou, “Building Quality-of-
Service Monitoring Systems for Traffic Engineering and
Service Management”, Journal of Network and Systems
Management, Vol. 11, No. 4, 2003

[8] Jim Pruyne, “Enabling QoS via Interception in
Middleware”, HP-Labs Report HPL-2000-29, February
2000

[9] Keynote Systems, http://www.keynote.com, as biewed
November 2004

[10] JBoss project, http://www.jboss.org, as viewed
September 2004

[11] James Skene, D. Davide Lamanna, Wolfgang
Emmerich, “Precise Service Level Agreements”,
Proceedings of the 26th International Conference on
Software Engineering, Pg. 179 – 188, 2004

[12] Sun Microsystems, Java Message Service (JMS)
Specification, http://java.sun.com/products/jms, Version
1.1, 2002

[13] C. Molina-Jimenez, S. Shrivastava, J. Crowcroft, and P.
Gevros, “On the Monitoring of Contractual Service Level
Agreements”, In Proceedings of the IEEE Conference on
Electronic Commerce CEC\04, San Diego, 2004

[14] J. Skene and W. Emmerich (2003), “Model Driven
Performance Analysis of Enterprise Information
Systems”, Electronic Notes in Theoretical Computer
Science, 82(6)

[15] R. Irani, S. J. Basha, “AXIS: Next Generation Java
SOAP”, Peer Information; 1st edition, 2002.

[16] Keld H. Hanse, “Load Testing your Applications with
Apache JMeter”, Java Boutique Internet,
http://javaboutique.internet.com/tutorials/JMeter/, as
viewed November 2004

[17] C. Molina-Jimenez, S. K. Shrivastava, E.Solaiman, J.
P.Warne, “Contract Representation for Run-time
Monitoring and Enforcement”, In Proceedings of the
IEEE International Conference on E-Commerce (CEC
2003), California, USA, 24-27 June 2003

[18] Arjuna Technologies, “Arjuna Messaging Service”,
http://www.arjuna.com/products/arjunams/index.html, as
viewed November 2004

 8

