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Abstract: This document outlines the network measurement layer
designed to support the QoS Group Communication system.
Together with deliverable D8 - QoS-Enabled Group Communication
provides a full description of the TAPAS Group Communication
facility.
This document is structured so as to discuss the system's
requirements first, after which it provides a brief high level look at
how the system is designed and concludes with a few words on the
integration issues with the rest of the Group Communication system.

Introduction
In deliverable D8 (QoS-Enabled Group Communication) [diferdinandoD8] we introduced
the Group Communication (GC) system designed for the TAPAS project. This system
provides users with probabilistic delay guarantees over the entire group. In order to be
able to provide this guarantee, the communication service needs to be aware of the
current state of the network behaviour for the group, as described in [diferdinando04], in
order to be able to carry out access control. The group communication system will be
then capable of deciding whether accept or not a communication request, with a given
delay and probability bounds, only if it knows whether  the network conditions will be
able to support the service level requested.
This document describes the Network Measurement System (NMS) designed to support
the TAPAS GC protocol. It extends the TAPAS deliverable D8 so as to complete
description of the GC System. Section 2 describes both functional and non-functional
requirements for the NMS. Design is described in Section 3, whilst integration with the
rest of the GC system is described in Section 4.

Requirements
In our system a group is defined as a set of processes engaged in a coordinated activity,
whose size of the group is assumed to be known. Each couple of members is connected
through a channel, liable of failure such as delays and losses. As a consequence, each
member knows how to reach each other member.
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Functional requirements: In order to reason about QoS guarantees over a multicast
group, the GC system needs up-to-date measurements for four particular network
properties, and it is the NMS that must provide this information to the GC. However, it is
easy to understand from Figure 1 that there are multiple paths involved in the network,
and it is likely each link will have a different set of properties.

For the group communication algorithm to work, the GC
system needs to know the worse case value for each
property. Given the multiplicity of links involved, then,
the value to report back will be chosen as the maximum
amongst the values for all paths. For example, each link
will have a different average delay, and the NMS must
report back the average delay for the link where this
reaches the maximum value. A further complication
arises if we consider that each different link could
experience worst value: one link may be fast but exhibit
high packet loss, whereas another link will be slow but
have low packet loss. Thus, the worse value for each
metric may actually come from a different link. Another
important observation is that not all members may see
the worse case link for a given metric. For example,
node A in Figure 1 cannot see the network link between

nodes B and C, yet this link may have the worse average delay, yet node A needs to be
aware of this. All these observations lead the need for each individual node to share any
network monitoring observations with all other members amongst the group. The four
pieces of information required are:

• The average delay of the slowest link between any two nodes in the group. This
gives a worse case packet delay for any message passed between two nodes in the
group. (d)

• The delay distribution for the link with the worse average packet delay. This will
describe the curve of the delay distribution, for example, uniform, exponential,
etc.

• The average packet loss of the most error prone link between any two nodes in the
group. This gives a worse case packet loss prediction for any message passed
between two nodes in the group. (q)

• The average difference in transmission delays (i.e., the average jitter).

With all this information, the group communication layer can make the appropriate
decisions for admitting communications. From this we can draw up the basic data flow
between the group communication system and the network monitoring system, as shown
in Figure 2. The group communication layer will provide the monitor with a list of group
members, with which it may coordinate, and the network monitoring layer will provide
the statistics required.

Figure 1 Simple 4 nodes
network



Figure 2 Data flow between GCS and NMS

Non-functional requirements: To interoperate with the already implemented group
communication layer, the NMS must provide a Java interface. This interface will be
callable by a Java program, which will provide a list of addresses of group members.
Once started, the network measurement layer will report back periodically the state of the
network using the four variables required.
The interface will be basic and will incorporate methods to monitor the network and
update the variables. It could be as simple as

public interface Monitor{
    public void monitor();
    public void update();
}

Related work
Attempting to monitoring networks is not a new issue, and the system proposed here can
take advantage of previous work done in this field. This section gives a quick overview of
some relevant work, looking both at research in monitoring and the advice given by the
Internet Engineering Task Force (IEFT) work group on IP Performance Monitoring
(IPPM).
Given the commonality of network monitoring, the IEFT has a monitoring working
group, IPPM, that is attempting to define standards for monitoring various network
properties over a series of RFCs. RFC 2330[rfc2330] provides a set of standard
definitions for monitoring, discussing the problems with trying to gain accurate
measurements. One relevant piece of advice is on how to sample data. An obvious way to
gather measurement data is through periodic sampling with a fixed interval, particularly
given the simplicity of implementation. However, this can lead to unwanted side effects.
Firstly, the measurement may happen to coincide with other regular traffic on the link,
causing the measurement not to reflect the average performance on the network, but the
performance at this interval. In addition, regular injection of measurement traffic in the
network may cause a level of synchronisation of traffic on the network, causing the
measurement to have a big effect on what is being monitored[floyd94].
The solution to these problems is to use a random distribution process, whereby the
samples are taken at intervals with a random distribution around the ideal interval. The



example given in RFC 2330 is to use Poisson sampling intervals, which are simple to
generate, and give the desired effect of removing the fixed periodic nature of the
sampling.
The requirements for the network monitoring layer being built is that it measures the
average delay between two nodes, commonly referred to as the One Way Delay (OWD).
RFC 2679[rfc2679] provides the IPPM's definition of how to monitor OWD. As pointed
out in RFC 2330, one important problem when trying to monitor networks is the lack of a
global clock for making time comparisons. Getting two computers to agree on time is a
very hard problem; even if it is possible to get the two computers to agree on the time at a
single point, their internal clocks will not run at exactly the same rate, and they will drift
apart over time. A common cheap solution to this problem is to use the Network Time
Protocol (NTP) to repeatedly synchronise a computer's clock to a very accurate clock
(e.g., an atomic clock). Periodically NTP will note the time as dictated by the more
accurate clock and then slowly apply a series of small changes to the local clock until it is
in line with the accurate clock (simply resetting the clock to the accurate time can
potentially cause a large jump in time, which may have bad side-effects, and thus is not
advisable).
This situation means that at any given time it is highly unlikely that any two computers
will agree what the time is, so measuring OWD becomes a problem. OWD measurements
using NTP for clock synchronisation has been shown to work under certain
conditions[smotlacha02], but that required the hosts to have specific close relationships
with NTP servers, and that cannot always be guaranteed. There have been attempts to use
software to try to detect and counteract clock drift and NTP effects[moon99,zhang02],
which monitor the skew effects and attempt to remove them. Another alternative is to use
more accurate (and thus expensive) clocks at the end systems, such as a GPS based clock.
However, that level of technology and cost is incompatible with the aim of the project,
which aims to use software alone.
The alternative is to measure the Round Trip Time taken to send a packet from one
computer to another and back again, which is covered by the IPPM in RFC
2681[rfc2681]. This technique only uses the clock of the sender to make a time
comparison, and can thus does not require two synchronised clocks. Once a Round Trip
Time (RTT) value has been produced, it can then be halved to generate an approximation
for one way delay. It is important to note that this technique also has a problem, which is
that it is not necessary for packets to traverse the same set of links in each direction, and
thus the delays in each direction may not be equal.

Design
This section describes design for the NMS. Its architecture has been designed with all
functional and non-functional requirements described in Section 2 in mind.

Local Link Assessment: The basic approach is that each node's network monitor will
use active monitoring based on RTT measurements to determine the state of the link
between itself and each of its neighbours. Using RTT measurements avoids the clock
synchronisation issues outlined in Section 2.



Periodically, based on a random
distribution (as recommended by
[rfc2330]), a monitor will attempt to
measure one of the links between itself
and another node. We do not attempt to
measure all links at once, as that would
potentially have a bad effect on the results
as the monitor needs to process all the
replies at a similar time, which would
cause errors in the delay measurement.
Each network monitor will use what we
have termed a

z-ping to generate monitoring information,
as shown in Error! Reference source not
found.. This attempts to reduce the load of

measurement slightly by combining two RTT measurements into one, which requires
three packets rather than four. In a single z-ping transaction both ends will be able to
infer properties about the network rather than just the initiating node, which will mean
that the average interval used between monitoring attempts by a node can be reduced, as
often it will be able to take measurements based on another nodes attempts at
measurement.
Should the RTT measurement be successful, within a certain timeout period, then the
RTT value can be halved to get a delay value for that sample, which can then be used to
calculate an updated average delay, delay distribution, and average delay variance for the
link involved. If not, then the attempt is taken to be an indicator of packet loss

Estimating the Delay Distribution: As part of the working out the average delay, the
network monitor will be required to hold a set of delay values over the last period of
interest. These same values will then need to be used to work out the distribution of the
delay values. The technique chosen for this is based on the chi-square goodness-of-fit
test[james03]. The sample data will be divided into a series of buckets, and then the
samples in these buckets is compared with how the buckets should be filled for a set of
known distribution curves, with the curve parameters based on the measured mean and
distribution. The values of the sampled data are then compared to the ideal curves using a
the chi-square goodness-of-fit test which will indicate how well the data matches a given
curve for a certain probability of accuracy.
This technique does require that we know before hand what type of curves we except to
have to fit too, but that is also a requirement of the GC work, so this is acceptable.

Result Distribution: Over time the NMS at a particular node will build up a picture of
the performance of the links between it and the other nodes in the group. However, the
node needs to know the performance of the worse case links of the group overall. To do
this, the nodes must periodically broadcast their results to the rest of the group. This will
be done at a time scale longer than that of individual sampling, as the average
performance is not expected to change as quickly as the instantaneous conditions on the

Figure 3 Overview of the three way
ping algorithm



network will. Broadcasts could also be sent under special circumstances, such when the
local conditions are noted to exceed a certain threshold. The message sent during results
distribution contains the following four values:

• The worse delay average for any of the links seen by the node.
• The distribution of the delay average for the above link.
• The worse case delay variance for any of the links seen by the node.
• The worse case packet loss for any of the links seen by the node.

Upon receiving a broadcast, the node will look at all the 4-tuples of data it has from all
the active nodes on the network, and then it will pick the overall worse values, and it is
these values that will be reported up to the GC layer, as they represent the worse case link
within the group, and thus the values that all nodes must use when making their
probabilistic delivery calculations for access control.

Integration with the rest of the system
The GC system’s components realize tasks that must be executed at different timings.
Timely and sequential execution of them is vital for the protocol to correctly deliver the
service. For this reason the user does not have direct access to the protocol. Its logic is
encapsulated in a Protocol object that the user accesses. The NMC is instantiated by
the Protocol object upon its own instantiation. This allows to have some data by the
time the negotiation will have to take place.
In order to work correctly, it needs the list of members to monitor. Such list is passed in
instantiation phase, and a dynamic group management protocol ensures the list to be
updated, and consistent with the list of every other group member.
After instantiation, the NMS starts its tasks. The only component with which it
communicates is the Negotiation component, to which it periodically passes generated
network metrics in order to be used in the approximation process. The needed data is
encapsulated into a custom data type, NetData, and passed to the Negotiation to be
used. Communication between the two components is done by means of the use of a
synchronized queue, where the NMS deposits a value that the Negotiation Component
pops. In formation contained into the NetData is stored into Negotiation’s synchronized
variables and used for approximation purposes.
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