
1

Component Replication in Distributed Systems: a
Case study using Enterprise Java Beans

G. Morgan‡, A. I. Kistijantoro‡, S. K. Shrivastava‡ and M.C. Little‡*

‡School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
*Arjuna Technologies Ltd., Newcastle upon Tyne, UK

Abstract

A recent trend has seen the extension of object-oriented middleware to component-
oriented middleware. A major advantage components offer over objects is that only
the business logic of an application needs to be addressed by a programmer with
support services required incorporated into the application at deployment time. This is
achieved via components (business logic of an application), containers that host
components and are responsible for providing the underlying middleware services
required by components (such as persistence) and application servers that host
containers. Well-known examples of component middleware architectures are
Enterprise Java Beans (EJBs) and the CORBA Component Model (CCM). Services
available at deployment time in most component architectures are component
persistence (typically using databases) and atomic transactions (for ensuring the
consistency of component state). This paper examines, using EJBs, how replication
for availability can be supported by containers so that components that are
transparently using persistence and transactions can also be made highly available.

Key Words: Availability, components, CORBA Component Model , Enterprise Java
Beans, fault tolerance, middleware, replication, transactions

DRAFT: 30 Dec 2002

2

1. Introduction

Modern client-server distributed computing systems may be seen as implementations
of an N-tier architecture. In a typical four tier architecture the first tier (client tier)
consists of client applications containing browsers, with the remaining three tiers
deployed within an enterprise representing the server side; the second tier (Web tier)
consists of a Web server that receives client requests typically via HTTP and passes
on the requests to specific applications residing in the third tier (business tier) that is
capable of hosting distributed applications; the fourth tier (enterprise information
systems tier) contains databases and legacy applications of the enterprise. The
platform providing the Web tier plus business tier is usually called an application
server.

An application server typically deploys a variety of object oriented middleware
services using an object request broker (ORB) and provides to applications a higher
level of abstraction of component oriented middleware. It is worth examining here
briefly why this higher level of abstraction has been considered necessary. Although
object oriented middleware provides type checked remote invocations and standard
ways of using commonly required services (such as for naming, persistence,
transactions, etc.), a problem still remains that application developers have to worry
about application logic as well as technically complex ways of using a collection of
services. For example, use of transactions on distributed objects requires concurrency
control, persistence and the transaction services to be used in a particularly intricate
manner. Component oriented middleware alleviates this difficulty by the use of
components that are composed of objects, and containers that host component
instances. Containers take on the responsibility for using the underlying middleware
services for communication, persistence, transactions, security and so forth and a
developer’s task is simplified to specifying the services required by components in a
declarative manner. Thus, a major advantage components offer over objects is that
only the business logic of an application (encoded in objects) needs to be addressed
by a developer. Well-known examples of component middleware architectures
include Enterprise Java Beans (EJBs) and the CORBA Component Model (CCM).

In this paper we investigate how software implemented fault tolerance techniques can
be applied to support component replication for high availability. We take the specific
case of EJB components and consider strict consistency (that requires that the states
of all available copies of replicas be kept mutually consistent). We take EJBs
primarily because not only they are used extensively in industry, but also because
open source implementations of application servers for EJBs are available for
experimentation. However, we believe that the ideas presented here are of interest to
the general case of component middleware. In particular, as EJBs are closely related
to the language independent CCM, the ideas presented here can be applied to the
world of CORBA components.

Data as well as object replication techniques have been studied extensively in the
literature, so our task is not to invent new replication techniques for components, but
to investigate how existing techniques can be migrated to components. In the spirit of

3

component middleware, we prefer to delegate the responsibility of replication
management to the container (container managed replication). We therefore examine
how replication for availability can be supported by containers so that components
that are transparently using persistence and transactions can also be made highly
available, enabling a transaction involving EJBs to commit despite a finite number of
failures involving application servers (where computations take place) and databases
(where persistent data is kept).

Ours is an engineering task that poses several problems that require careful resolution.
In order to highlight these problems and possible solutions, we consider three
replication approaches, beginning with a simple approach into which we
incrementally incorporate additional sophistication. To explain these approaches,
consider a simple transaction that in a non-redundant system operates on EJBs living
within a single container, with the beans storing their persistent states on a database;
in this system, we incorporate redundancy as follows:

(i) State replication with single application server: Database is replicated; here
database (but not the application server) failures can be masked, so the transaction
will be able to commit provided the application server can access a copy of the
database.

(ii) State replication with clustered application servers: Database is replicated;
multiple application servers are used for load sharing the total number of transactions
in the system; an individual transaction has the same reliability features as case (i)
above.

(iii) State and computation replication with clustered application servers: Database is
replicated and instances of beans are replicated on the cluster of application servers;
this is an ideal set of server side availability measures as it is able to mask a finite
number of application server and database failures.

We require that our solutions must be open (non-propriety) and implementable in
software. Furthermore, we require that our solutions be transparent to the component
middleware. The transparency requirement imposes the following constraints on our
solutions: (a) no modifications to the API (Application Programming Interface)
between client and component; (b) no modifications to the API between an EJB and
the container; and (c) no modifications to the existing middleware services and APIs.
Given these constraints, the contributions of the paper are to show that approaches (i)
and (ii) can be implemented with relative ease, but it is not possible to implement
approach (iii) without breaking constraint (c); we outline what enhancements would
be necessary to the component middleware to support approach (iii).

The paper is structured as follows: background information on EJB component
middleware is presented is section 2; replication approaches are then discussed in
section three; related work is presented in section four, with concluding remarks in
section five.

4

2. EJBs and Application Servers

The specification of Java 2, Enterprise Edition (J2EE) defines a platform for
developing Web-enabled applications using Java Server Pages (JSPs), Servlets and
EJBs. Application servers for Java components (also called J2EE servers) are
expected to provide a complete implementations of J2EE. In the first two sub-sections
we describe the terminology and basic concepts of J2EE middleware that should be
sufficient for our purposes (for additional details, see [1]). The third sub-section
describes availability measures currently provided in application servers.

2.1. EJBs

Three types of EJBs have been specified in J2EE: (1) Entity beans represent and
manipulate persistent data of an application, providing an object-oriented view of a
data that is frequently stored in relational databases. (2) Session beans on the other
hand do not use persistent data, and are instantiated on a per-client basis with an
instance of a session bean available for use by only one client. A session bean may be
stateless (does not maintain conversational state) or stateful (maintains conversational
state). Conversational state is needed to share state information across multiple
requests from a client. (3) Message driven beans provide asynchronous processing by
acting as message listeners for Java Messaging Service (JMS). Every session (entity)
bean has a component interface that defines the business methods callable by the
clients, and a home interface that defines the methods for the client to create, remove,
and find EJB components of the same type. All client to (entity, session) bean
communications is normally achieved via the Java Remote Method Invocation (RMI).
In this paper we will be concerned with session and entity beans only. Availability
considerations for message driven beans will also need to consider those of JMS, and
this is regarded a topic in its own right.

Information describing the appropriate system services required and how they are to
be applied to an EJB is specified by a developer within a deployment descriptor. A
container is responsible for hosting components and ensuring that middleware
services are made available to components at run time as described in deployment
descriptors of components. Containers mediate all client/component interactions. A
container vendor achieves this by providing automatic code generation tools that will
produce the appropriate mechanisms that integrate a component successfully into a
container.

An entity bean can either manage its state explicitly on a persistent store (bean
managed persistence) or delegate it to the container (container managed persistence).
All EJB types may participate in transactions. Like persistence, two approaches are
available:

• Container managed: The deployment descriptor is used to specify the
transactional qualities associated with the EJB on a per-method basis. A developer
does not have to identify transactional boundaries (e.g., begin, commit) in an
enterprise bean’s code. The container sets the boundaries of a transaction,
beginning a transaction immediately before an enterprise bean method starts and
commits a transaction just before a method exits.

5

• Bean managed: A developer explicitly specifies transactional boundaries within
the code of an enterprise bean.

Use of container managed persistence and transactions is strongly recommended for
entity beans. Below we describe how this particular combination works, as we will
be assuming this combination for our replication schemes.

2.2 Transactional EJB applications

The main elements required for supporting transactional EJB applications deployed in
an application server are shown in figure 1. An application server usually manages a
few containers, with each container hosting many (hundreds of) EJBs; only one
container with three EJBs is shown in the figure. The application server is a multi-
threaded application that runs in a single process (supported by single Java Virtual
Machine). Of the many middleware services provided by an application server to its
containers, we explicitly show just the transaction service. A transaction manager is
hosted by the application server and assumes responsibility for enabling transactional
access to EJBs. The transaction manager does not necessarily have to reside in the
same address space as the application server, however, this is frequently the case in
practical systems. At least one resource manager (persistence store) is required to
maintain persistent state of the entity beans supported by the application server; we
show two in the figure. In particular, we have shown relation database management
systems (RDBMS) as our resource managers (bean X stores its state on RDMSA and
bean Y does the same on RDMSB). We assume that resource managers support ACID
transactions (ACID: Atomicity, Consistency, Isolation, Durability).

container

Session

Entity Y

JDBCA

XAA

JDBCB

XAB

RDBMSAEntity X

RDBMSB

Application Server

Transaction
Manager

Client
invocation

Figure 1 – Elements involved in EJB transactions.

Communications between an RDBMS and a container is via a Java DataBase
Connectivity (JDBC) driver, referred in the J2EE specification as a resource adaptor.
A JDBC driver is primarily used for accessing relational databases via SQL
statements. To enable a resource manager to participate in transactions originated in
EJBs, a further interface is required. In J2EE architecture this interface is referred to
as the XAResource interface (shown as XA in figure 1). A separation of concerns
between transaction management via XAResource interface and resource manager
read/write operations via JDBC is clearly defined. In simple terms, the transaction
manager interoperates with the resource manager via the XAResource interface and
the application interoperates with the resource manager via the JDBC driver.

We now describe, with the aid of figure 1, a sample scenario of a single transaction
involving three enterprise beans and two resource managers. A session bean receives

6

a client invocation. The receiving of the client invocation results in the session bean
starting a transaction, say T1, and issuing a number of invocations on two entity
beans (X and Y). When entity beans are required by the session bean, first the session
bean will have to ‘activate’ these beans via their home interfaces, which results in the
container - we are assuming container managed persistence - retrieving their states
from the appropriate resource managers for initialising the instance variables of X and
Y. The container is responsible for passing the ‘transaction context’ of T1 to the
JDBC drivers in all its interactions, which in turn ensure that the resource managers
are kept informed of transaction starts and ends. In particular: (i) retrieving the
persistent state of X (Y) from RDMSA (RDMSB) at the start of T1 will lead to that
resource manager write locking the resource (the persistent state, stored as a row in a
table); this prevents other transactions from accessing the resource until T1 ends
(commits or rolls back); and (ii) XA resources (XAA and XAB) ‘register’ themselves
with the transaction manager, so that they can take part in two-phase commit.

Once the session bean has indicated that T1 is at an end, the transaction manager
attempts to carry out two phase commit to ensure all participants either commit or
rollback T1. In our example, the transaction manager will poll RDBMSA and
RDBMSB (via XAA and XAB respectively) to ask if they are ready to commit. If a
RDBMSA or RDBMSB cannot commit, they inform the transaction manager and roll
back their own part of the transaction. If the transaction manager receives a positive
reply from RDBMSA and RDBMSB it informs all participants to commit the
transaction and the modified states of X and Y become the new persistent states.

In our example, all the beans are in the same container. Support for distributed
transactions involving beans in multiple containers (on possibly distinct application
servers) is straightforward if the transaction manager is built atop a CORBA
transaction service (Java Transaction Service), since such a service can coordinate
both local and remote XA resources. Such a transaction manager will also be able to
coordinate a transaction that is started within a client and spans EJBs, provided the
client is CORBA enabled. For this reason, in the rest of the paper, we need only
consider the simple case of a transaction, that, in a non redundant system, spans EJBs
within a single container and a few resource managers.

2.3. Availability measures in current application servers

Commercial application servers make use of multiple applications servers deployed
over a cluster of machines with some specialist router hardware (see below) to mask
server failures and rely on propriety replication mechanisms of database vendors for
database availability (for example, some Oracle database products support a specific
replication scheme). As we discuss below, these availability measures do not integrate
properly with EJB initiated transactions.

Application servers are typically deployed over a cluster of machines. A locally
distributed cluster of machines (a set of machines) with the illusion of a single IP
address and capable of working together to host a Web site provides a practical way
of scaling up processing power and sharing load at a given site. Commercially
available application server clusters rely on a specially designed gateway router to
distribute the load using a mechanism known as network address translation (NAT).

7

The mechanism operates by editing the IP headers of packets so as to change the
destination address before the IP to host address translation is performed. Similarly,
return packets are edited to change their source IP address. Such translations can be
performed on a per session basis so that all IP packets corresponding to a particular
session are consistently redirected. Load distribution can also be performed using a
process group communication system as first suggested by the ISIS system [2]; a
recent open source application server has such a mechanism [3]. The two market
leaders in the application server space, WebSphere [4] from IBM and WebLogic [5]
from BEA, have very similar approaches to clustering. They typically characterise
clustering for:

• Scalability: The proposed configuration should allow the overall system to service
a higher client load than that provided by the simple basic single machine
configuration. Ideally, it should be possible to service any given load, simply by
adding the appropriate number of machines.

• Load-balancing: The proposed configurations should ensure that each machine or
server in the configuration processes a fair share of the overall client load that is
being processed by the system as a whole. Furthermore, if the total load changes
over time, the system should adapt itself to maintain this load-balancing property.

• Failover: If any one machine or server in the system were to fail for any reason,
the system should continue to operate with the remaining servers. The load-
balancing property should ensure that the client load gets redistributed to the
remaining servers, each of which will henceforth process a proportionately
slightly higher percentage of the total load. Transparent failover (failures are
masked from a client, who minimally might need to retransmit the current
request) is an ideal, but rarely achievable with the current technology, for the
reasons to be outline below. However, the important thing in current systems is
that forward progress is possible eventually and in less time than would be the
case if only a single machine were used.

Transparent failover is easy to achieve for stateless sessions: any server in the cluster
can service any request and if a client makes multiple requests in succession each
may well be serviced by a different server. Failover support in this case is trivial: if a
failure of the server occurs while it is doing work for the client then the client will get
an exceptional response and will have to retransmit the request. The situation is more
complicated for a stateful session, where the same server instance must be used for
requests from the client, so the server failure will lead to loss of state. The approach
adopted in commercial systems to avoid loss of state is to use the stateless session
approach with a twist: the stateful session bean is required to serialize its state to a
datastore at the end of each client request and for the subsequent bean instance in the
other server to deserialize the state before servicing the new request (obviously the
servers must have access to the same datastore). The replication of the datastore is
assumed to be the domain of the datastore itself. This way, some of the functionality
available for stateless sessions can be regained. However, even in this case, a failure
during serialization of the bean's state (which could result in the state being
corrupted) is not addressed. There is a more serious limitation: transactions cannot be

8

supported. if transactional access to a bean is used, then the same server instance must
be used for every invocation on that bean.

3. Component Replication

The three approaches mentioned at the start of the paper will be considered in some
detail in this section. We will nevertheless highlight only the essential aspects of our
designs, glossing over minute details of replica management. We begin by stating the
main assumptions. We will assume that an application server either works as
specified or simply stops working (crash). After a crash, a server is repaired within a
finite amount of time and made active again. We assume that resource managers
support ACID transactions. As stated earlier, in this paper we consider availability
measures for session and entity beans but not for message driven beans and consider
strict consistency.

3.1. State Replication With Single Application Server

By replicating state (resource managers) an application server may continue to make
forward progress as long as a resource manager replica is correctly functioning and
reachable by the application server. We consider how state replication may be
incorporated in the scheme shown in figure 1 and use ‘available copies’ approach to
data replication (‘read from any, write to all’) [6]

Figure 2 depicts an approach to resource manager replication that leaves the
container, transaction managers internal to resource managers and the transaction
manager of the application server undisturbed. RDBMSs A and B are now replicated
(replicas A1, A2 and B1, B2). Proxy resource adaptors (JDBC driver and
XAResource interface) have been introduced (identified by the letter P appended to
their labels in the diagram; note that for clarity, not all arrowed lines indicating
communication between proxy adaptors and their adaptors have been shown). The
proxy resource adaptors reissue the operations arriving from the transaction manager
and the container to all replica resource managers via their resource adaptors.

Session

Entity Y

Transaction
Manager

JDBCA1

XAA1

JDBCB2

XAB2

RDBMSA1

Entity X

RDBMSB1

Application Server

Client
invocation

JDBCB1

XAB1

JDBCA2

XAA2

RDBMSB2

RDBMSA2

JDBCAP

XAAP

JDBCBP

XABP

Figure 2 – Replication of state.

To ensure resource manager replica states remain mutually consistent, the resource
adaptor proxy maintains the receive ordering of operation invocations when

9

redirecting them to the appropriate resource adaptor replicas. This guarantees that
each resource adaptor replica receives operations in the same order, thus guaranteeing
consistent locking of resources across resource manager replicas.

Suppose during the execution of a transaction, say T1, one of the resource manager
replicas say RDBMSA1.fails. A failure would result in JDBCA1 and/or XAA1 throwing
an exception that is caught by JDBCAP and/or XAAP. In an unreplicated scheme, an
exception would lead to the transaction manager issuing a rollback for T1. However,
assuming RDBMSA2 is correctly functioning such exceptions will not be propagated
to the transaction manager, allowing T1 to continue on RDBMSA2. In such a scenario
the states of the RDBMSA1 and RDBMSA2 may deviate if T1 commits on RDBMSA2.
Therefore, RDBMSA must be removed from the valid list of resource manager
replicas until such a time when the states of RDBMSA1 and RDBMSA2 may be
reconciled (possibly via administrative intervention during periods of system
inactivity). Such a list of valid resource managers may be maintained by XAAP (as is
the case for XAResources, XAAP is required to be persistent, with crash recovery
procedures as required by the commit protocol).

The outline design presented here provides a simple and practical way of introducing
data replication into component middleware.

3.2. State Replication With Clustered Application Servers

A single transaction manager may be used to manage transactions across clustered
application servers. However, to ensure a transaction manager does not present a
bottleneck in the system, and a single point of failure, we assume that application
servers are replicated complete with transaction managers (this is the case in practical
systems). Figure 3 depicts a scenario where a cluster contains two application servers
(AS1 and AS2) that are accessing shared resource manager replicas. We have
maintained our architecture for providing state replication as described in the previous
subsection. Only the resource adaptor proxies are shown to make the diagram simple;
further, arrowed communication lines between resource managers and proxies -not all
such lines have been shown - are dashed to emphasise that the communication is
actually through resource adapters and XAResources (that are not shown in the
figure).

The possibility of multiple transactions running on different application servers each
accessing shared resource manager replicas increases the difficulty of ensuring
resource manager replicas remain mutually consistent. For example, assume T1 is
executing on AS1 and T2 is executing on AS2 and both T1 and T2 require
invocations to be issued on entity bean X. We want to prevent the situation that
enables T1 to proceed as the container of AS1 manages to obtain the state of X from
RDBMSA1 and at the same time, T2 proceeds as the container of AS2 manages to
obtain the state of X from RDBMSA2. This will break the serializable property of
transactions. To overcome this problem, a single resource manager replica that is the
same for all application servers should satisfy load requests for relevant entity beans
(we call such a resource manager a primary read resource manager). This will ensure
that the ordering of load requests is serialized, causing conflicting transactions to
block until locks are released. To ensure resource managers remain mutually

10

consistent the store request (when an entity bean updates its persistent state in the
resource manager) is issued to all resource manager replicas.

Session

Entity Y

Transaction
Manager

RDBMSA1

Entity X

RDBMSB1

Application Server 1

Client
invocation

RDBMSB2

RDBMSA2

JDBCAP1

XAAP1

JDBCBP1

XABP1

Session

Entity Z

Transaction
Manager

Entity X

Application Server 2

Client
invocation

JDBCAP2

XAAP

JDBCBP2

XABP2

process group

Figure 3 – Clustered application servers and state replication.

Resource adaptor proxies from different application servers that need to access the
same resource manager replicas have to agree on the primary read resource manager.
In the presence of resource manager failure (and a possibility of incorrect suspicion of
resource manager failure) an agreement protocol needs to be executed between
resource adaptor proxies, so that they have the same view on the primary. We can
obtain this facility by making use of a group communications system that supports the
abstraction of a process group (and totally ordered atomic multicast, which is not
required in this particular case) [2]. In our example, all the ‘A’ proxies need to be in a
process group, and all the ‘B’ proxies need to be in a process group. For the sake of
simplicity, in the figure, we have shown all the proxies to be the member of a single
group, as this simple arrangement will work as well.

Furthermore, the identification of the primary read resource manager needs to be
available to an application server after a restart. This may be achieved by allowing a
resource adaptor proxy of the newly restarted application server to gain the identity of
the primary read resource manager from existing application servers. This requires
the list of available resource adaptor proxies to be stored persistently by an
application server. This type of persistent data may be stored within the XA element
of a proxy resource adaptor.

The outline design presented here provides a practical way of introducing data
replication for transactional EJB applications into a cluster of servers.

3.3. State and computation replication with clustered application servers

We now consider what is involved in masking application server failures. Since state
replication can be incorporated transaparently in a cluster as discussed earlier, we can
examine masking of application server failures independent of state replication. We

11

need the ability to replicate containers on distinct application servers (with distinct
transaction managers) and ensure the states of EJBs in container replicas and
transactional states within the respective transaction managers are mutually
consistent. One way of doing this would be to use the process group approach, and
manage the replicas using active or passive replication techniques. Unfortunately,
there are pitfalls:
• Active replication: application servers are intrinsically multi-threaded and even

working in a homogeneous application server environment (i.e., where application
server replicas are copies of the same implementation) it is almost impossible to
ensure that the same invocation received at container replicas will be dealt with
identically. When using heterogeneous application servers, issues such as thread
pooling add more complications.

• Passive replication: when using primary-copy replication, it is theoretically
possible in a homogenous environment to checkpoint the state of a container (e.g.,
at transaction commit time) such that a backup can take over in the event of
primary failure: it is assumed that an application server implementation can create
the checkpoint in such a format that another instance of the same implementation
can later read it in. In a heterogeneous environment, such state check-pointing
requires intimate knowledge of the different internal and external state formats of
the application server implementations involved. Most vendors do not make this
kind of information publicly available (and especially not to competitors).
Unfortunately, at present there is no open standard for defining state transfer
between application server implementations, so any solution would be application
server specific.

• The same issues arise for replication of transaction managers. Although all
transaction managers will have the concept of a transaction log (the persistent
entity into which information about transactions is kept such that transactions may
be completed in the event of recovery after failures), there is no open standard
available for initialising a transaction manager from a checkpointed log, so state
transfer mechanisms between transaction managers will be transaction manager
specific.

Ideally, we would like a snapshot of the container (or possibly the application server)
state to be taken such that another (potentially heterogeneous implementation) could
take this snapshot and reconstitute the environment at the point it was originally
taken. In order to do this, standard interfaces need to be defined (and used) by all
compliant application server implementations. There is an attempt to address some of
this in JSR 117 (J2EE APIs for Continuous Availability), which is developing the
notion of a Field Replaceable Unit (FRU): an FRU is a collection of modules that can
be deployed independently of other application modules that may be part of (for
example) an application server [7]. The definer of an FRU is responsible for ensuring
that state transfer between implementations is possible (by defining the format of an
externalised state and specifying how this is created and can be used to initialise
another FRU). This work is at an early stage.

12

4. Related Work

Replicated data management techniques that go hand in hand with transactions have
been discussed in [6]. Object replication using the process group communication,
originally developed in the ISIS system [2] has been studied extensively. [8] discusses
system issues in object replication using this approach, discussing in particular how to
move away from ‘process’ centric groups to ‘object groups’. The paper describes how
a CORBA object group service [9] can be utilised for supporting replication. The
Eternal system [10] offers replicated, non-persistent CORBA objects. A complete
fault tolerance framework for CORBA objects is presented in [11]. These object
approaches have not considered the issue of integrating transactions and persistence.
The object replication approaches used in the Arjuna system consider these issues
[12, 13, 14]. The use of transactions and group communication for supporting
persistent object replication is investigated in [15]. The replication approach
presented in section 3.2 is based on the approach discussed in [15].

Database replication techniques have been investigated extensively. A classification
of database replication techniques have been presented that suggests group
communications can be utilised in the support of eager (strong consistency)
replication protocols [16]. Traditionally, lazy replication schemes were favoured by
commercial products (changes that are a result of a transaction committing at one
replica are subsequently propagated to other replicas) because the communication
overheads of eager schemes compared to lazy schemes is significant. However, the
inconsistencies across database replicas that may result from lazy schemes (not an
issues in eager schemes) coupled with promising initial results of integrating group
communication into replica database schemes identify eager schemes as a viable
choice in the future [17]. Group communications have also been identified as
providing a suitable platform on which to build mechanisms that allow new members
of a database replica group to retrieve current state information from existing
database replicas [18]. Within the context of the study presented here, a drawback of
these approaches is the need to integrate a group communications sub-system into the
database architecture, making such schemes difficult to work with existing
commercial databases. A second drawback is that the transaction model assumed is
not distributed (a transaction can not span multiple databases). To overcome the first
drawback, a middleware layer has been proposed that provides the required
functionality to enable a more seamless integration of group communication based
eager replication schemes into existing commercial databases [19]. If the second
drawback can be removed, then these approaches will be very suitable for supporting
state replication.

5. Concluding remarks

In this paper we have examined how for the case of EJB component middleware,
replication for availability can be supported by containers so that components that are
transparently using persistence and transactions can also be made highly available,
enabling a transaction involving EJBs to commit despite a finite number of failures
involving application servers (where computations take place) and databases (where
persistent data is kept). We have shown that whereas database replication can be

13

incorporated transparently, the same is not yet possible for application servers.
Enhancements required for enabling this have been pointed out and explained.

References

1] R. Monson-Haefel, “Enterprise Java Beans “, O’Reilly, 2001

[2] K. Birman , "The process group approach to reliable computing", CACM , 36,
12, pp. 37-53, December 1993.

[3] JBoss application server: www.jboss.org

[4] WebSphere Scalability: WLM and Clustering, September 2000,
http://ibm.com/redbooks/sg246153.pdf

[5] BEA White Paper, “Achieving Scalability and High Availability for E-
Business - Cluster ing in B A WebLogic® Server”,
ftp://edownload:BUY_ME@ftpna2.bea.com/pub/downloads/wls_clustering.p
df, September 2001.

[6] P.A. Bernstein et al, "Concurrency Control and Recovery in Database
Systems", Addison-Wesley, 1987.

[7] JSR 117: J2EE APIs fo r Cont inuous Ava i lab i l i ty
http://www.jcp.org/jsr/detail/117.jsp

[8] R. Guerraoui, P. Felber, B. Garbinato and K. Mazouni, “System support for
object groups”, Proceedings of the ACM Conference on Object Oriented
Programming Systems, Languages and Applications, OOPSLA 98.

[9] P. Felber, R. Guerraoui, and A. Schiper, “The implementation of a CORBA
object group service”, Theory and Practice of Object Systems, 4(2), 1998, pp.
93-105.

[10] L. E. Moser, P. M. Melliar-Smith and P. Narasimhan,"Consistent Object
Replication in the Eternal System", Theory and Practice of Object Systems,
vol. 4, no. 2 (1998).

[11] L. E. Moser, P. M. Melliar-Smith and P. Narasimhan, "A Fault Tolerance
Framework for CORBA," Proceedings of the IEEE International Symposium
on Fault-Tolerant Computing, Madison, WI (June 1999), pp. 150-157.

[12] M.C. Little and S. K. Shrivastava, "Replicated K-resilient objects in Arjuna",
Proceedings of the 1st IEEE Workshop on the Management of Replicated
Data, Houston, November 1990, pp. 53-58.

[13] M. C. Little, D. McCue and S. K. Shrivastava, “Maintaining information
about persistent replicated objects in a distributed system”, ICDCS-13,
Pittsburgh, May 1993, pp. 491-498.

[14] M.C. Little and S K Shrivastava, “Implementing high availability CORBA
applications with Java”, IEEE Workshop on Internet Applications,
WIAPP’99, San Jose, July 1999, pp. 112-119.

[15] M. C. Little and S. K. Shrivastava, “Integrating Group Communication with
Transactions for Implementing Persistent Replicated Objects”, Chapt. 10,
Advances in Distributed Systems (S. Krakowiak, S. K. Shrivastava, Editors),
LNCS Vol. No. 1752, 2000.

14

[16] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, G. Alonso, “Database
Replication Techniques: a Three Parameter Classification”, Proc. of the 19th
IEEE Symposium on Reliable Distributed Systems (SRDS2000), Nürnberg,
Germany, October 2000.

[17] B. Kemme & G. Alonso, “A New Approach to Developing and Implementing
Eager Database Replication Protocols”, ACM Transactions on Database
Systems (TODS), Volume 25, No. 3, September 2000, pp 333-379.

[18] B. Kemme, A. Bartoli, O. Babaouglu, “Online Reconfiguration in Replicated
Databases Based on Group Communication”, Proc. of the IEEE International
Conference on Dependable Systems and Networks (DSN 2001), Goteborg,
Sweden, June 2001.

[19] R. Jiménez-Peris, M. Patiño-Martínez, B. Kemme, G. Alonso, “Improving the
Scalability of Fault-Tolerant Database Clusters: Early Results”, Proc. of the
IEEE 22nd Int. Conf. on Distributed Computing Systems 2002, ICDCS'02.
Vienna, Austria. July 2002.

