
Electronic Notes in Theoretical Computer Science 82 No. 6 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 12 pages

Model Driven Performance Analysis of
Enterprise Information Systems 1

James Skene 2 and Wolfgang Emmerich 3

Department of Computer Science
University College London
London, United Kingdom

Abstract

This paper describes the particular motivation for performance analysis in the do-
main of Enterprise Information Systems (EISs) and argues that the Model Driven
Architecture (MDA) is a suitable framework for integrating formal analysis tech-
niques with engineering methods appropriate to the domain. The MDA permits
natural and economical modelling of design and analysis domains and the relation-
ships between them, supporting both manual and automatic analysis. It incorpo-
rates the Unified Modelling Language (UML), which is extensively used to capture
system designs. We present our general modelling approach and outline its use
in relating models of Enterprise Java Bean (EJB) applications, annotated using
standard profiles, to analysable formal models.

1 Introduction

Distributed component technologies support the development of distributed
applications by combining a component model with a middleware technol-
ogy. Components are reusable and composable units of software. They ex-
port functionality to their environment and may also import functionality
from their environment using well defined interfaces. Distributed systems
are typically required to possess properties of openness, scalability and het-
erogeneity. Middleware supports distribution by providing transparency for
numerous implementation concerns[7]: Most importantly, local and remote
communications are treated uniformly by encapsulating communications us-
ing interfaces. Distributed systems are more complicated to develop than
non-distributed systems, and middleware often provides additional support in

1 This research is funded by the EU through grant IST-2001-34069 (Trusted and QoS-Aware
Provision of Application Services).
2 Email: j.skene@cs.ucl.ac.uk
3 Email: w.emmerich@cs.ucl.ac.uk

c©2003 Published by Elsevier Science B. V.



Skene and Emmerich

the form of standard services, for example transaction and persistence ser-
vices. These are also accessed via standard interfaces, and in some cases the
middleware requires the business logic to reside in a specialised environment,
often called a transaction monitor. When the business logic is encapsulated
in the form of components this is a distributed component architecture.

Standardised distributed component architectures are necessary to permit
the reuse of components in different contexts, and interoperability between
components developed by different organisations. The standards specify the
form that the components must take and the services that they can expect
from their environment. Several standards have been developed, the most
prominent being Enterprise Java Beans (EJBs)[27], the CORBA Component
Model (CCM)[19] and .NET[14]. These technologies are widely used in the
deployment of enterprise information systems. Markets have been created
both for components that can be redeployed within a purchasing organisation
and for remote services that can be integrated into software using the loca-
tion transparency properties of the middleware. This latter business model
is called Application Service Provision (ASP) and is suitable in situations
where the service provided is complex, centralised or benefits from economies
of scale. For example, existing application services provide credit ratings,
payment systems and fulfilment.

The Model Driven Architecture (MDA) was conceived to address the prob-
lem of architectural tie-in in software development, particularly when devel-
oping software that relies on middleware. At the core of the MDA is the
Unified Modelling Language (UML), a graphical language widely employed
in software engineering. The MDA advocates the separation of Platform In-
dependent Models (PIMs), representing the business logic of an application,
from Platform Specific Models (PSMs) representing the deployment of that
business logic using a particular technology. Software development proceeds
as a process of refinement from PIMs to PSMs, each specified using the UML,
appropriately extended with domain concepts. UML is already used to de-
sign enterprise information systems and increasingly organisations will use
the MDA approach to insulate themselves from change in the competitive
distributed component architecture marketplace.

Enterprise information systems render the issue of performance analysis
both important and difficult. The performance of a system may be charac-
terised by the response time and throughput of its use-cases, conditioned by
the workload that the system is experiencing. A system is said to be scal-
able if its performance characteristics vary gracefully under increasing work-
loads. If application service marketplaces are to be viable on a large scale,
providers and their clients will need to enter into Service Level Agreements
(SLAs), whose terms will explicitly describe their mutual responsibilities with
respect to performance and workload. Both parties will need to reason about
the implications of entering into such an agreement with respect to the over-
all performance of a composite application and the capacity of the provider

2



Skene and Emmerich

to accommodate multiple clients. Such reasoning can only be provided in
competition with the engineering benefits provided by distributed component
technologies. In order to accurately predict performance we must know how
components are deployed, the manner in which data is persisted, threading
and component activation policies, and other concerns relegated to the mid-
dleware that normally need not be represented in the design of a distributed
component application.

In this paper we propose that the MDA is a suitable framework for the
integration of a variety of analysis techniques into the process of developing
distributed applications. The meta-modelling facilities of the UML permit
us to express the design and analysis domains naturally, using the concepts
inherent to these domains. Crucially, this allows us to incorporate domain
knowledge relating to the behaviour of distributed component architectures
without imposing drastically on the normal modelling requirements of a soft-
ware development project. The use of meta-model mappings between design
and analysis domains permits a flexible association of design domains and
analysis methods and permits us to describe the construction of valid analytic
models. UML is supported by tools, allowing us to assist or automate the pro-
cess of analysis. In this paper we elaborate our approach and show in outline
how it can be applied to response-time prediction for EJB applications. This
latter effort is a work in progress: We are not yet in possession of all of the
domain knowledge that will permit us to describe the construction of valid
models, particularly that relating to the innate performance characteristics
of architectural components such as the application container and database.
Section 5 discusses future work we mean to undertake in this area.

The remainder of this paper provides: In section 2, a survey of related work;
in section 3, a description of our modelling approach; in section 4, an example
of our approach applied to response time prediction of EJB applications; and
in section 5 a summary of our contribution and future direction.

2 Related Work

This paper seeks in part to address the issues identified by Pooley in [26]. It
is clearly related to other efforts to derive performance models from UML di-
agrams, of which there are many [25,24,8,5,11,4], in our case-study use of the
Profile for Schedulability, Performance and Time Specification we resemble
[23]. Additional surveys of the area are provided in [3,2]. We differ from these
approaches in our insistence that the analysis models should also be speci-
fied in UML, using profiles provided by the lightweight extension mechanism.
[8] suggests that UML could represent performance models, but relegates its
duties to communications between software and performance engineers. We
believe that our approach is complementary to most cited here as it can repre-
sent and integrate the many useful derivations hitherto proposed, and indeed
other analysis methods taking UML diagrams as their source [10,6].

3



Skene and Emmerich

In [12] an analytical model of an EJB server is presented, but identified
with a specification method. [15] proposes a framework approach to modelling
and monitoring EJB performance but does not elaborate a modelling method.

Our approach to meta-modelling using the UML lightweight extension
mechanism is consistent with the official MDA white paper [17], but also
resembles the efforts of the approach of the precise UML group in their UML
2.0 infrastructure proposal [1]. If future versions of the MDA specifications
advocate stronger meta-modelling approaches (heavyweight extension mecha-
nisms) then we would prefer to use the Meta Object Facility [20] to represent
our analysis models and mappings.

3 Mapping to Analysis Models

The UML is capable of representing all aspects of a software system and is
widely used for development, making it a logical starting point for the analysis
of software designs. It may be extended to refine its fundamental semantics
allowing it to model complex domains naturally, using the concepts inherent
to those domains. A particular semantic extension of the UML is called a
’profile’. Profiles can incorporate logical constraints on the models that can
be expressed. It is also possible to specify profiles representing mappings be-
tween different models, for example from a PIM to a PSM (a deployment
relationship) using these constraints. Such a mapping could be checked to
ensure that the implementation has the properties demanded by the design
and could perhaps be automated to assist developers in implementing an ap-
plication.

Mappings between PIMs and PIMs or PSMs and PSMs can also represent
useful relationships, such as abstractions, redeployments and refactorings. We
propose that analytical modelling can be supported by defining a mapping
from a design domain (PIM/PSM) to a domain representing an analysis for-
malism. Each domain and the mapping between them are represented by a
UML profile. An analysis model can be considered to be an alternative PSM
in so far as it is the abstract implementation of a design in the context of the
analysis tool to be used. Our approach is as follows:

(i) Identify the design domain and the profiles that are being employed to
describe it.

(ii) Determine the properties of interest and identify an appropriate analysis
technique. Define a profile to represent the entities within the analysis
domain.

(iii) Define a mapping between the design domain and the analysis domain
that correctly represents the semantics of each. Express it using logical
constraints captured in a mapping profile.

(iv) Automate the mapping.

(v) Automate analysis of the analysis models.

4



Skene and Emmerich

It would also be possible to describe the domain of analysis results and a
mapping back to design models. This would permit the results of analysis to
be reintegrated into the design models. This is desirable when the analysis is
highly automated, allowing the details of the analysis to be hidden from the
engineer entirely.

The next section provides a detailed example of this approach applied to
response-time prediction of EJB applications. The design domain identified
is that of EJB applications with performance requirements. This domain is
described using standard profiles published by the Object Management Group
(OMG), the body responsible for the UML and MDA initiatives, and the Java
Community Process (JCP). The analysis domain chosen is that of queuing net-
works with open workloads, a formalism appropriate to modelling resource-
bound systems with large user populations such as might access a popular
application service, and permitting reasoning about response time and capac-
ity properties. The domain is modelled with a UML profile that allows the
specification of queuing networks as UML models. The mapping constrains
those queuing network models associated with a design to accurately repre-
sent the design. For example, all exclusive resources identified in the design
must be represented by queues in the queuing network. This mapping could
potentially be automated by a tool that examined a design and algorithmi-
cally constructed the corresponding queuing network model. Performing the
analysis will be the role of another tool. It will inspect the analysis models
and produce an analytical model from which it will derive results. In fact, the
UML models could be translated to the input format of an external analysis
tool. This translation could be mediated by yet another mapping, or the anal-
ysis domain could be chosen to have a very close correspondence to the input
format of the analysis tool. If the analysis tool is specialised for the particular
analysis then its input format is likely resemble the analysis domain closely.

The MDA provides support for tools that require model data as their input.
The data can be accessed via standard programmatic interfaces defined by
the MOF or as XML Metadata Interchange (XMI)[22] documents. XMI is a
specialisation of the Extensible Markup Language (XML)[28] to metadata.

To permit a consistent approach to modelling across organisations the
OMG, standardises UML profiles for particular domains. The Profile for
Schedulability, Performance and Time Specification[21] (henceforth the ‘per-
formance profile’) permits the description of performance requirements and
demands in the context of an abstract resource model. The specification sug-
gests that analysis tools directly inspect UML diagrams annotated according
to this profile in order to derive performance models and consequently predic-
tions (figure 1a). We differ in our belief that by considering the mapping to an
analysis model separately from the solution of the analysis model (figure 1b)
and by expressing the mapping and the domain of the analysis model using
the same modelling techniques employed in the design model, the following
benefits can be realised:

5



Skene and Emmerich

<<profile>> <<profile>> <<profile>> <<profile>>

Performance Design Mapping Analysis

integration integration

automatic 
construction

semi-
automatic 

construction

translation

translation

design

results

tool 
execution

tool 
execution

design

analysis

results

Fig. 1. (a) Performance profile approach to integrating analysis. (b) Our approach

(i) Analysis techniques can be flexibly applied to design domains by defining
new mappings. This is important because new design domains will often
emerge (for example as new implementation platforms are developed)
and they will be expressed using new profiles. This is both natural and
necessary. It is not feasible to represent all of the details of an application
container, for example, using only the domain concepts available in the
performance profile.

(ii) The semantic validity of analytic models can be checked against the de-
sign using existing model checking tools in the same way that PSMs may
be checked against PIMs. Automatic derivation of analytical models may
be possible in some cases.

(iii) Automatic derivation of analytical models is generally difficult. Human
intuition may be required to construct meaningful models. Models are
often infeasible, for example, because the resulting model has too large a
state space to permit analysis. If the analysis model were exposed in the
design tool then the user could intervene when problems occur, increasing
the feasibility of performing correct analyses.

Our approach does not deny or reduce the benefits of standardisation of
domain profiles such as the performance profile. It does acknowledge that not
all information pertinent to analysis can be naturally modelled using standard
profiles as it is impossible to completely anticipate what design or analysis
domains will be required. Uniformity of expression should nevertheless be
preserved by reusing, combining and specialising standard profiles wherever
possible.

4 Performance Analysis of Distributed Component Sys-
tems

We now provide an example approach to predicting the response-time of re-
mote method invocations against EJBs. The response time is defined to be the

6



Skene and Emmerich

period between synchronous method invocation and the signalling of method
completion to the client.

The UML Profile for EJB [9] (henceforth ‘EJB profile’) was used to specify
the architecture of the application. The performance profile was used to spec-
ify delay and demands for method invocations and deployment relationships
between the application components. The modelling prescription is broadly
as recommended in the performance profile:

(i) A deployment diagram shows the relationships between application com-
ponents (representing enterprise application archives, in the EJB termi-
nology), containers, servers, databases, naming service providers and the
application clients.

(ii) A use-case diagram describes the workload. The links between client
entities and the use-cases are annotated with exponential arrival rates
(an open workload [13]). This diagram forms the analysis context, ac-
cording to the terminology of the performance profile and contrary to its
recommendations.

(iii) For each use-case, an exemplary instance level sequence diagram shows
the client view of the EJB application.

(iv) For each session bean business method, an exemplary instance-level se-
quence diagram shows the actions taken by the method, annotated with
their expected delays and resource utilisations. The joint profile con-
strains these to be reasonable. For example, create methods invoked on
the home interface of an entity bean are required to have a database
utilisation demand.

(v) A component diagram indicates the packaging of classes into an applica-
tion component.

A physical packaging diagram, per the existing EJB profile could be used
as an alternative to item 5. This seems unnecessarily circuitous given the
redefinition of components in UML 1.4 (see below).

<<profile>>
EJB

<<profile>>
Performance

<<profile>>
Joint

<<profile>>
SunRI

<<profile>>
ForAnalysis

<<profile>>
Analysis

<<profile>>
Mapping

<<profile>>
Design

Fig. 2. Profiles used to model EJB applications

7



Skene and Emmerich

Figure 2 shows the profile packages used. The design domain is represented
by five profile packages. The performance profile and the EJB profile provide
the basic stereotypes. We combined elements of these profiles in a joint pro-
file, and added constraints that ensured that performance models contained
sufficient information to permit analysis. This profile also contained elements
necessary for analysis but not present in either of the standards, such as
stereotypes used to identify the container, naming service and database com-
ponents in a deployment diagram. The EJB profile only supports the design
of applications, not particular deployments, so these elements are omitted.
Moreover, defining these elements would over-prescribe the implementation of
the EJB standard. Unfortunately, in the context of a performance analysis
these elements must be represented, so we took a pragmatic approach and
included them in our extended profile without suggesting that they have been
unreasonably omitted from the standard.

The remaining domain profile packages were separated from the joint pro-
file for reasons of convenience. The reference implementation package contains
an inherited stereotype allowing us to identify the application server as being
the Java 2 reference implementation, and therefore specify application spe-
cific properties relevant to performance, such as the memory allocated to the
session bean pool, which potentially effects the latency of session bean cre-
ation. The simple analysis package contains constraints on the design domain
only pertinent to our particular analysis method, such as the constraint that
all workload classes specify an arrival rate. Such a constraint would not be
reasonable if closed population queuing network models were being used for
analysis.

<<metaclass>>
Instance

<<stereotype>>
Demand

<<stereotype>>
Queue

<<metaclass>>
Model

<<metaclass>>
Link

+delay:PAperfValue

<<stereotype>>
WorkloadClass

+delay:PAperfValue
+rate:PAperfValue

<<stereotype>>

<<stereotype>>

<<stereotype>><<stereotype>>

1 1 1..* <<stereotype>>
AnalysisModel

Fig. 3. A simple analysis domain profile

Figure 3 shows a view of the simple analysis domain, and figure 4 shows
a fragment of the mapping domain, indicating that the number of workload
classes in an analysis model should match the number of use-cases in a perfor-
mance context. A comprehensive treatment of the profiles is beyond the scope
of this paper. Moreover, the mapping profile is as yet inadequately specified,
as discussed in the introduction and conclusion sections.

The particular modelling approach may be summarised as follows:

(i) Design the application using the UML diagrams specified above. Anno-
tate them using the stereotypes from the design profile. A model checking

8



Skene and Emmerich

<<stereotype>>
from ForAnalysis
AnalysisContext

<<metaclass>>
UseCase

/

<<stereotype>>
from Analysis
AnalysisModel

1..* 1..*

0..*

<<stereotype>>
from Analysis

WorkloadClass

inv:
self.analysisModel->forAll(m |
   m.workloadClass->size() =
   self.UseCase->size())

Fig. 4. A constraint from the mapping profile

tool can be used to check that the design is reasonable according to the
constraints in the profiles.

(ii) Develop an analysis model of the application. The analysis model will
be specified using the stereotypes from the analysis profile, and should
satisfy the constraints in the mapping and analysis profiles.

(iii) Perform the analysis.

In future work we will address the automation of the second two items in
the context of this example.

In the development of our design profiles we encountered the following
issues with the standard profiles:

(i) The EJB profile is out of date, covering only EJB 1.1. To represent our
application we were forced to extend the profile to differentiate between
local and remote interfaces.

(ii) The EJB profile uses UML version 1.3 [16]. The redefinition of compo-
nents in version 1.4 [18] requires the representation of EJB packaging to
be modified to use artifacts rather than components.

(iii) The EJB profile specifies its constraints using natural language. Using
OCL in the manner of the UML specification would have been preferable.

(iv) The performance profile does not impose any constraints on the models
that it specifies. Several reasonable constraints could be included without
limiting the applicability of the profile. For example, it is not reasonable
for an instance to deploy itself, and all action execution with resource
demands should correspond to entities deployed in a context where those
resources are available.

(v) As noted in [23] the performance profile does not readily permit the
expression of workloads containing multiple scenarios (use-cases).

5 Conclusions and Future Work

In this paper we observe that the UML exists within the wider context of
the MDA and that the meta-modelling facilities provided by the MDA can be
employed in at least two useful ways. Firstly, they provide a standard means
to describe formal models and their mappings from development models. This
captures the semantics of the analysis technique and could be used to validate
analysis models or automate their production. If used in the context of a CASE

9



Skene and Emmerich

tool, such mappings could be customised and the analysis models inspected
and altered if necessary. This mitigates the extreme difficulty involved in
automatically producing feasible and valid analysis models.

Secondly, the use of meta-modelling techniques would allow a CASE tool
to incorporate new analysis techniques with mappings from design domains
with non-standard semantics. This would accommodate the wide variety of
performance analysis techniques and real world situations to which they may
be applied. In this paper we have provided the example of enterprise infor-
mation systems and discussed the economic benefits of applying performance
analysis techniques. Using only techniques standard to the MDA we described
the design domain of EJB applications, including its extended semantics, and
described a mapping to a family of analysis models.

Immediate future challenges include determining precisely what consti-
tutes a valid analysis model for our EJB designs, and incorporating this in-
formation into our mapping profile. If we persist in using queuing network
models to analyse our designs then this will entail discovering and charac-
terising resources and demands hidden in architectural components such as
the application container and database. We also wish to enhance the level
of automation for mappings and the validation of models against the domain
profiles. We intend to evaluate the accuracy and practicality of our approach
using real-life case studies, including a large e-science project and a distributed
auction system, both of realistic complexity and under development within our
department. 4

References

[1] A. Clark, S. K., A. Evans, “Unambiguous UML (2U) Revised Submission to
UML Infrastructure RFP,” Object Management Group (2002),
http://cgi.omg.org/cgi-bin/doc?ad/02-06-14.pdf.

[2] Balsamo, S. and M. Simeoni, Deriving performance models from software
architecture specifications, in: Proceedings of the European Simulation
Multiconference 2001 (2001).

[3] Balsamo, S. and M. Simeoni, On transforming UML models into performance
models, in: Workshop on Transformations in UML, 2001.

[4] Bernardi, S., S. Donatelli and J. Merseguer, From UML sequence diagrams
and statecharts to analysable petri net models, in: Proceedings of the Third
International Workshop on Software and Performance (2002), pp. 35–45.

[5] Cortellessa, V. and R. Mirandola, Deriving a queueing network based
performance model from UML diagrams, in: Proceedings of the Second
International Workshop on Software and Performance (2000), pp. 58–70.

4 Thanks to Davide Lamanna, Genáına Nunes Rodrigues and Joanne Hacking for their
assistance with this document.

10



Skene and Emmerich

[6] Cortellessa, V., H. Singh, B. Cukic, E. Gunel and V. Bharadwaj, Early
reliability assessment of UML based software models, in: Proceedings of the
Third International Workshop on Software and Performance (2002), pp.
91–92.

[7] Emmerich, W., “Engineering Distributed Objects,” John Wiley and Sons,
Ltd., 2000.

[8] Hoeben, F., Using UML models for performance calculation, in: Proceedings of
the Second International Workshop on Software and Performance (2000), pp.
77–82.

[9] Java Community Process, “UML/EJB Mapping,” (2001),
http://www.jcp.org/jsr/detail/26.jsp.

[10] Kaveh, N. and W. Emmerich, Deadlock detection in distributed object systems,
in: Joint 8th European Software Engineering Conference (ESEC) and 9th
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE-9) (2001), pp. 44–51.

[11] Lindemann, C., A. Thümmler, A. Klemm, M. Lohmann and O. Waldhorst,
Performance analysis of time-enhanced UML diagrams based on stochastic
processes, in: Proceedings of the Third International Workshop on Software
and Performance (2002), pp. 77–82.

[12] Lladó, C. and P. Harrison, Performance evaluation of an enterprise javabean
server implementation, in: Proceedings of the Second International Workshop
on Software and Performance (2000), pp. 180–188.

[13] Menascé, D. and V. Almeida, “Capacity Planning for Web Services: Metrics,
Models and Methods,” Prentice Hall PTR, 2002.

[14] Microsoft Corporation, “.NET Framework,”
http://www.microsoft.com/net/.

[15] Mos, A. and J. Murphy, A framework for performance monitoring, modelling
and prediction of component oriented distributed systems, in: Proceedings of
the Third International Workshop on Software and Performance (2002), pp.
235–236.

[16] Object Management Group, “Unified Modelling Language (UML), version
1.3,” (2000), http://www.omg.org/cgi-bin/doc?formal/00-03-01.pdf.

[17] Object Management Group, “Model Driven Architecture (MDA),” (2001),
http://cgi.omg.org/docs/ormsc/01-07-01.pdf.

[18] Object Management Group, “Unified Modelling Language (UML), version
1.4,” (2001), http://www.omg.org/cgi-bin/doc?formal/01-09-67.pdf.

[19] Object Management Group, “CORBA Component Model, v3.0,” (2002),
http://cgi.omg.org/docs/formal/02-06-65.pdf.

11



Skene and Emmerich

[20] Object Management Group, “Meta Object Facility (MOF), version 1.4,”
(2002), http://www.omg.org/cgi-bin/doc?formal/02-04-03.pdf.

[21] Object Management Group, “UML Profile for Schedulability, Performance,
and Time Specification,” (2002),
http://www.omg.org/cgi-bin/doc?ptc/02-03-02.pdf.

[22] Object Management Group, “XML Metadata Interchange (XMI), version
1.2,” (2002), http://www.omg.org/cgi-bin/doc?formal/02-01-01.pdf.

[23] Petriu, D. and H. Shen, Applying the UML performance profile: Graph
grammar-based derivation of LQN models from UML specifications, in:
Performance TOOLS 2002, Lecture Notes in Computer Science 2324 (2002),
pp. 159–179.

[24] Pooley, R., Using UML to derive stochastic petri net models, in: Proceedings of
the fifteenth UK Performance Engineering Workshop (UKPEW), 1999, pp.
45–56.

[25] Pooley, R., Using UML to derive stochastic process algebra models, in:
Proceedings of the fifteenth UK Performance Engineering Workshop
(UKPEW), 1999, pp. 23–34.

[26] Pooley, R., Software engineering and performance: A road-map, in: Future of
Software Engineering (2000), pp. 189–200.

[27] Sun Microsystems, “Enterprise JavaBeans 2.0 Specification Final Release,”
(2001), http://java.sun.com/j2ee/docs.html.

[28] W3C World Wide Web Consortium, “Extensible Markup Language XML 1.0
(Second Edition),” (2000), http://www.w3.org/TR/REC-xml.

12


